深度学习入门案例波士顿房价预测(代码片段)

川川菜鸟 川川菜鸟     2022-12-27     236

关键词:

人工智能,机器学习,深度学习

做个简单介绍:三者的关系如 图1 所示,即:人工智能 > 机器学习 > 深度学习。

深度学习设计框架:

环境查看

import paddle
import numpy as np
import os
import matplotlib
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import warnings
warnings.filterwarnings("ignore")

print(paddle.__version__)

返回:

数据处理

在这里插入代码片

数据下载

如果你还没安装wget,点击教程安装:window配置安装wget
下载数据:

wget https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data -O housing.data 

返回:

开始处理

def load_data():
    # 从文件导入数据
    datafile = './work/housing.data'
    data = np.fromfile(datafile, sep=' ', dtype=np.float32)

    # 每条数据包括14项,其中前面13项是影响因素,第14项是相应的房屋价格中位数
    feature_names = [ 'CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', \\
                      'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV' ]
    feature_num = len(feature_names)

    # 将原始数据进行Reshape,变成[N, 14]这样的形状
    data = data.reshape([data.shape[0] // feature_num, feature_num])

    # 将原数据集拆分成训练集和测试集
    # 这里使用80%的数据做训练,20%的数据做测试
    # 测试集和训练集必须是没有交集的
    ratio = 0.8
    offset = int(data.shape[0] * ratio)
    training_data = data[:offset]

    # 计算train数据集的最大值,最小值,平均值
    maximums, minimums, avgs = training_data.max(axis=0), training_data.min(axis=0), \\
                                 training_data.sum(axis=0) / training_data.shape[0]
    
    # 记录数据的归一化参数,在预测时对数据做归一化
    global max_values
    global min_values
    global avg_values
    max_values = maximums
    min_values = minimums
    avg_values = avgs

    # 对数据进行归一化处理
    for i in range(feature_num):
        data[:, i] = (data[:, i] - avgs[i]) / (maximums[i] - minimums[i])

    # 训练集和测试集的划分比例
    training_data = data[:offset]
    test_data = data[offset:]
    return training_data, test_data

模型设计

两步走:
定义init函数:在类的初始化函数中声明每一层网络的实现函数。在房价预测模型中,只需要定义一层全连接层,模型结构和使用Python和Numpy构建神经网络模型》章节模型保持一致。
定义forward函数:构建神经网络结构,实现前向计算过程,并返回预测结果,在本任务中返回的是房价预测结果。

class Regressor(paddle.nn.Layer):

    # self代表类的实例自身
    def __init__(self):
        # 初始化父类中的一些参数
        super(Regressor, self).__init__()
        
        # 定义一层全连接层,输入维度是13,输出维度是1
        self.fc = Linear(in_features=13, out_features=1)
    
    # 网络的前向计算
    def forward(self, inputs):
        x = self.fc(inputs)
        return x

训练配置

配置有如下四步:

1.声明定义好的回归模型Regressor实例,并将模型的状态设置为训练。
2.使用load_data函数加载训练数据和测试数据。
3.设置优化算法和学习率,优化算法采用随机梯度下降SGD,学习率设置为0.01。
代码为:

# 声明定义好的线性回归模型
model = Regressor()
# 开启模型训练模式
model.train()
# 加载数据
training_data, test_data = load_data()
# 定义优化算法,使用随机梯度下降SGD
# 学习率设置为0.01
opt = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())

注意:
模型实例有两种状态:训练状态.train()和预测状态.eval()。训练时要执行正向计算和反向传播梯度两个过程,而预测时只需要执行正向计算,为模型指定运行状态

训练过程

EPOCH_NUM = 10   # 设置外层循环次数
BATCH_SIZE = 10  # 设置batch大小

# 定义外层循环
for epoch_id in range(EPOCH_NUM):
    # 在每轮迭代开始之前,将训练数据的顺序随机的打乱
    np.random.shuffle(training_data)
    # 将训练数据进行拆分,每个batch包含10条数据
    mini_batches = [training_data[k:k+BATCH_SIZE] for k in range(0, len(training_data), BATCH_SIZE)]
    # 定义内层循环
    for iter_id, mini_batch in enumerate(mini_batches):
        x = np.array(mini_batch[:, :-1]) # 获得当前批次训练数据
        y = np.array(mini_batch[:, -1:]) # 获得当前批次训练标签(真实房价)
        # 将numpy数据转为飞桨动态图tensor形式
        house_features = paddle.to_tensor(x)
        prices = paddle.to_tensor(y)
        
        # 前向计算
        predicts = model(house_features)
        
        # 计算损失
        loss = F.square_error_cost(predicts, label=prices)
        avg_loss = paddle.mean(loss)
        if iter_id%20==0:
            print("epoch: , iter: , loss is: ".format(epoch_id, iter_id, avg_loss.numpy()))
        
        # 反向传播
        avg_loss.backward()
        # 最小化loss,更新参数
        opt.step()
        # 清除梯度
        opt.clear_grad()

返回:

保存模型

将模型当前的参数数据model.state_dict()保存到文件中(通过参数指定保存的文件名 LR_model),以备预测或校验的程序调用。
代码为:

# 保存模型参数,文件名为LR_model.pdparams
paddle.save(model.state_dict(), 'LR_model.pdparams')
print("模型保存成功,模型参数保存在LR_model.pdparams中")

测试模型

通过load_one_example函数实现从数据集中抽一条样本作为测试样本,具体实现代码如下所示。

def load_one_example():
    # 从上边已加载的测试集中,随机选择一条作为测试数据
    idx = np.random.randint(0, test_data.shape[0])
    idx = -10
    one_data, label = test_data[idx, :-1], test_data[idx, -1]
    # 修改该条数据shape为[1,13]
    one_data =  one_data.reshape([1,-1])

    return one_data, label
 # 参数为保存模型参数的文件地址
model_dict = paddle.load('LR_model.pdparams')
model.load_dict(model_dict)
model.eval()

# 参数为数据集的文件地址
one_data, label = load_one_example()
# 将数据转为动态图的variable格式 
one_data = paddle.to_tensor(one_data)
predict = model(one_data)

# 对结果做反归一化处理
predict = predict * (max_values[-1] - min_values[-1]) + avg_values[-1]
# 对label数据做反归一化处理
label = label * (max_values[-1] - min_values[-1]) + avg_values[-1]

print("Inference result is , the corresponding label is ".format(predict.numpy(), label))

返回:

通过比较“模型预测值”和“真实房价”可见,模型的预测效果与真实房价接近。

参考资料

百度深度学习飞桨:

https://www.paddlepaddle.org.cn/

完整源码

# coding=gbk
"""
作者:川川
@时间  : 2021/8/29 15:40
群:970353786
"""
#加载飞桨、Numpy和相关类库
import paddle
from paddle.nn import Linear
import paddle.nn.functional as F
import numpy as np


def load_data():
    # 从文件导入数据
    datafile = './housing.data'
    data = np.fromfile(datafile, sep=' ', dtype=np.float32)

    # 每条数据包括14项,其中前面13项是影响因素,第14项是相应的房屋价格中位数
    feature_names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', \\
                     'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV']
    feature_num = len(feature_names)

    # 将原始数据进行Reshape,变成[N, 14]这样的形状
    data = data.reshape([data.shape[0] // feature_num, feature_num])

    # 将原数据集拆分成训练集和测试集
    # 这里使用80%的数据做训练,20%的数据做测试
    # 测试集和训练集必须是没有交集的
    ratio = 0.8
    offset = int(data.shape[0] * ratio)
    training_data = data[:offset]

    # 计算train数据集的最大值,最小值,平均值
    maximums, minimums, avgs = training_data.max(axis=0), training_data.min(axis=0), \\
                               training_data.sum(axis=0) / training_data.shape[0]

    # 记录数据的归一化参数,在预测时对数据做归一化
    global max_values
    global min_values
    global avg_values
    max_values = maximums
    min_values = minimums
    avg_values = avgs

    # 对数据进行归一化处理
    for i in range(feature_num):
        data[:, i] = (data[:, i] - avgs[i]) / (maximums[i] - minimums[i])

    # 训练集和测试集的划分比例
    training_data = data[:offset]
    test_data = data[offset:]
    return training_data, test_data


class Regressor(paddle.nn.Layer):

    # self代表类的实例自身
    def __init__(self):
        # 初始化父类中的一些参数
        super(Regressor, self).__init__()

        # 定义一层全连接层,输入维度是13,输出维度是1
        self.fc = Linear(in_features=13, out_features=1)

    # 网络的前向计算
    def forward(self, inputs):
        x = self.fc(inputs)
        return x
# 声明定义好的线性回归模型
model = Regressor()
# 开启模型训练模式
model.train()
# 加载数据
training_data, test_data = load_data()
# 定义优化算法,使用随机梯度下降SGD
# 学习率设置为0.01
opt = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())

EPOCH_NUM = 10  # 设置外层循环次数
BATCH_SIZE = 10  # 设置batch大小

# 定义外层循环
for epoch_id in range(EPOCH_NUM):
    # 在每轮迭代开始之前,将训练数据的顺序随机的打乱
    np.random.shuffle(training_data)
    # 将训练数据进行拆分,每个batch包含10条数据
    mini_batches = [training_data[k:k + BATCH_SIZE] for k in range(0, len(training_data), BATCH_SIZE)]
    # 定义内层循环
    for iter_id, mini_batch in enumerate(mini_batches):
        x = np.array(mini_batch[:, :-1])  # 获得当前批次训练数据
        y = np.array(mini_batch[:, -1:])  # 获得当前批次训练标签(真实房价)
        # 将numpy数据转为飞桨动态图tensor形式
        house_features = paddle.to_tensor(x)
        prices = paddle.to_tensor(y)

        # 前向计算
        predicts = model(house_features)

        # 计算损失
        loss = F.square_error_cost(predicts, label=prices)
        avg_loss = paddle.mean(loss)
        if iter_id % 20 == 0:
            print("epoch: , iter: , loss is: ".format(epoch_id, iter_id, avg_loss.numpy()))

        # 反向传播
        avg_loss.backward()
        # 最小化loss,更新参数
        opt.step()
        # 清除梯度
        opt.clear_grad()

# 保存模型
# 保存模型参数,文件名为LR_model.pdparams
paddle.save(model.state_dict(), 'LR_model.pdparams')
print("模型保存成功,模型参数保存在LR_model.pdparams中")

##测试模型
def load_one_example():
    # 从上边已加载的测试集中,随机选择一条作为测试数据
    idx = np.random.randint(0, test_data.shape[0])
    idx = -10
    one_data, label = test_data[idx, :-1], test_data[idx, -1]
    # 修改该条数据shape为[1,13]
    one_data =  one_data.reshape([1,-1])

    return one_data, label

# 参数为保存模型参数的文件地址
model_dict = paddle.load('LR_model.pdparams')
model.load_dict(model_dict)
model.eval()

# 参数为数据集的文件地址
one_data, label = load_one_example()
# 将数据转为动态图的variable格式
one_data = paddle.to_tensor(one_data)
predict = model(one_data)

# 对结果做反归一化处理
predict = predict * (max_values[-1] - min_values[-1]) + avg_values[-1]
# 对label数据做反归一化处理
label = label * (max_values[-1] - min_values[-1]) + avg_values[-1]

print("Inference result is , the corresponding label is ".format(predict.numpy(), label))

希望能帮到你))

:从线性神经网络入手深度学习(波士顿房价案例)(代码片段)

文章目录一:波士顿房价预测数据集说明二:Pytorch搭建模型(1)数据处理(2)网络结构(3)损失函数(4)优化方法(5)训练预测(6)模型保存(7)模型加载本节... 查看详情

机器学习梯度下降法应用波士顿房价预测(代码片段)

目录1线性回归api介绍小结2波士顿房价预测2.1案例背景介绍2.2案例分析2.3回归性能评估2.4代码实现2.4.1正规方程2.4.2梯度下降法2.5小结1线性回归api介绍机器学习梯度下降算法:https://blog.csdn.net/ZGL_cyy/article/details/127037949sklearn.lin... 查看详情

深度学习(波士顿房价预测)(代码片段)

...反向传播2.2.4优化算法3测试结果4完整源程序 1实验背景波士顿房价预测是一个经典的机器学习任务,类似于程序员世界的“HelloWorld”。和大家对房价的普遍认知相同,波士顿地区的房价是由诸多因素影响的。该数据集统... 查看详情

机器学习算法:波士顿房价预测|黑马程序员(代码片段)

学习目标:通过案例掌握正规方程和梯度下降法api的使用1案例背景介绍数据介绍   给定的这些特征,是专家们得出的影响房价的结果属性。我们此阶段不需要自己去探究特征是否有用,只需要使用这些特征。到后... 查看详情

keras深度学习实战——房价预测(代码片段)

...实战(8)——房价预测0.前言1.任务与模型分析1.1波士顿房价数据集1.2神经网络分析2.使用神经网络实现房价预测3.使用自定义损失函数小结系列链接0.前言我们已经学习了神经网络的基本概念,并且已经使用Keras构建... 查看详情

《python深度学习》第三章-2(波士顿房价-回归问题)读书笔记(代码片段)

第三章-2(回归问题)本次重点:boston_housing的回归模型(K折验证,loss=‘mse’,metrics=‘mae’)3.1预测房价:回归问题回归问题前面两个例子都是分类问题,其目标是预测输入数据点所对应的单一离散的标签。另一... 查看详情

线性回归案例:波士顿房价预测(代码片段)

波士顿房价预测1.背景介绍2.案例分析3.回归性能评估4.代码实现4.1正规方程4.2梯度下降法5.小结1.背景介绍数据介绍给定的这些特征,是专家们得出的影响房价的结果属性。我们此阶段不需要自己去探究特征是否有用,只... 查看详情

机器学习实战二:波士顿房价预测bostonhousing(代码片段)

波士顿房价预测Bostonhousing这是一个波士顿房价预测的一个实战,上一次的Titantic是生存预测,其实本质上是一个分类问题,就是根据数据分为1或为0,这次的波士顿房价预测更像是预测一个连续值,当然这也是... 查看详情

实战案例分享:我用python预测房价走势(代码片段)

...很多人都关心的一个话题。今天分享的这篇文章,以波士顿的房地产市场为例,根据低收入人群比例、老师学生数量等特征,利用Python进行了预测,给大家做一个参考。该分享源于Udacity机器学习进阶中的一个mini... 查看详情

机器学习工程师-udacity项目1:预测波士顿房价(代码片段)

第一步.导入数据在这个项目中,你将利用马萨诸塞州波士顿郊区的房屋信息数据训练和测试一个模型,并对模型的性能和预测能力进行测试。通过该数据训练后的好的模型可以被用来对房屋做特定预测---尤其是对房屋的价值。... 查看详情

hcia-ai_机器学习_波士顿房价预测(代码片段)

机器学习实验-波士顿房价预测1波士顿房价预测1.2实验代码1.2.1引入依赖包1.2.2加载数据集,查看数据属性,可视化1.2.3分割数据集,并对数据集进行预处理1.2.4利用各类回归模型,对数据集进行建模1.2.5利用网格搜... 查看详情

深度学习入门,keras实现回归模型(代码片段)

RegressionwithKeras在本教程中,您将学习如何使用Keras和深度学习执行回归。您将学习如何训练Keras神经网络进行回归和连续值预测,特别是在房价预测的背景下。今天的帖子开始了关于深度学习、回归和连续值预测的3部分... 查看详情

[pytorch系列-27]:神经网络基础-多输入神经元实现波士顿房价预测(代码片段)

作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:https://blog.csdn.net/HiWangWenBing/article/details/120605366目录前言深度学习模型框架第1章业务领域分析1.1 步骤1-1:... 查看详情

tensorflow暑期实践——波士顿房价预测(全部代码)(代码片段)

#coding:utf-8get_ipython().run_line_magic(‘matplotlib‘,‘notebook‘)importmatplotlib.pyplotaspltimporttensorflowastfimporttensorflow.contrib.learnasskflowfromsklearn.utilsimportshuffleimportnumpyasnpimp 查看详情

机器学习实战——用线性回归预测波士顿房价

查看详情

机器学习之利用线性回归预测波士顿房价和可视化分析影响房价因素实战(python实现附源码超详细)(代码片段)

...据是否在一定时期内增长或下降。接下来以线性回归预测波士顿房价进行实战解析线性回归代码如下importnumpyasnpimportmatplotlib.pyplotaspltfromsklearn.model_selectionimporttrain_test_split#读数据data=np.loadtxt(boston_house_price.csv',float,delimiter... 查看详情

udacity机器学习-波士顿房价预测小结(代码片段)

EvernoteExportbody,tdfont-family:微软雅黑;font-size:10pt机器学习的运行步骤1.导入数据没什么注意的,成功导入数据集就可以了,打印看下数据的标准格式就行用个info和describe2.分析数据这里要详细分析数据的内容,看看缺省值和数据的... 查看详情

线性回归预测波士顿房价(代码片段)

 预测波士顿的房价,上次已经通过房间数目预测了房价,这次用多元线性回归预测。根据之前推导的多元线性回归的参数 接下来是多元线性回归的代码实现defLinearRegression_(x,y):np.array(x)np.array(y)a=(np.linalg.inv(x.T.dot(x))).dot(x.... 查看详情