深度学习100例-生成对抗网络(dcgan)手写数字生成|第19天(代码片段)

K同学啊 K同学啊     2022-12-13     759

关键词:

深度卷积生成对抗网络(DCGAN)

一、前言

🚀 我的环境:

  • 语言环境:Python3.6.5
  • 编译器:jupyter notebook
  • 深度学习环境:TensorFlow2.4.1

🚀 深度学习新人必看:

  1. 小白入门深度学习 | 第一篇:配置深度学习环境
  2. 小白入门深度学习 | 第二篇:编译器的使用-Jupyter Notebook
  3. 小白入门深度学习 | 第三篇:深度学习初体验

🚀 卷积神经网络篇:

  1. 深度学习100例-卷积神经网络(CNN)实现mnist手写数字识别 | 第1天
  2. 深度学习100例-卷积神经网络(CNN)彩色图片分类 | 第2天
  3. 深度学习100例-卷积神经网络(CNN)服装图像分类 | 第3天
  4. 深度学习100例-卷积神经网络(CNN)花朵识别 | 第4天
  5. 深度学习100例-卷积神经网络(CNN)天气识别 | 第5天
  6. 深度学习100例-卷积神经网络(VGG-16)识别海贼王草帽一伙 | 第6天
  7. 深度学习100例-卷积神经网络(VGG-19)识别灵笼中的人物 | 第7天
  8. 深度学习100例-卷积神经网络(ResNet-50)鸟类识别 | 第8天
  9. 深度学习100例-卷积神经网络(AlexNet)手把手教学 | 第11天
  10. 深度学习100例-卷积神经网络(CNN)识别验证码 | 第12天
  11. 深度学习100例-卷积神经网络(Inception V3)识别手语 | 第13天
  12. 深度学习100例-卷积神经网络(Inception-ResNet-v2)识别交通标志 | 第14天
  13. 深度学习100例-卷积神经网络(CNN)实现车牌识别 | 第15天
  14. 深度学习100例-卷积神经网络(CNN)识别神奇宝贝小智一伙 | 第16天
  15. 深度学习100例-卷积神经网络(CNN)识别眼睛状态 | 第17天

🚀 循环神经网络篇:

  1. 深度学习100例-循环神经网络(RNN)实现股票预测 | 第9天
  2. 深度学习100例-循环神经网络(LSTM)实现股票预测 | 第10天

🚀 生成对抗网络篇:

  1. 深度学习100例-生成对抗网络(GAN)手写数字生成 | 第18天

🚀 本文选自专栏:《深度学习基础50例》
🚀 精选优质专栏:《夜深人静写算法》

二、什么是生成对抗网络?

生成对抗网络(GAN)是当今计算机科学领域最有趣的想法之一。两个模型通过对抗过程同时训练。一个生成器模型(“艺术家”)学习创造看起来真实的图像,而判别器模型(“艺术评论家”)学习区分真假图像。

GAN 的应用十分广泛,它的应用包括图像合成、风格迁移、照片修复以及照片编辑,数据增强等等。

1)风格迁移

图像风格迁移是将图像A的风格转换到图像B中去,得到新的图像。

2)图像生成

GAN 不但能生成人脸,还能生成其他类型的图片,比如漫画人物。

1. 设置GPU

import tensorflow as tf

gpus = tf.config.list_physical_devices("GPU")

if gpus:
    tf.config.experimental.set_memory_growth(gpus[0], True)  #设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpus[0]],"GPU")
    
# 打印显卡信息,确认GPU可用
print(gpus)
[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]
from tensorflow.keras  import layers
from IPython           import display
import matplotlib.pyplot as plt
import numpy             as np
import glob,imageio,os,PIL,time

2. 加载和准备数据集

您将使用 MNIST 数据集来训练生成器和判别器。生成器将生成类似于 MNIST 数据集的手写数字。

(train_images, _), (_, _) = tf.keras.datasets.mnist.load_data()

train_images = train_images.reshape(train_images.shape[0], 28, 28, 1).astype('float32')

# 将图片标准化到 [-1, 1] 区间内
train_images = train_images / 127.5 - 1  
BUFFER_SIZE = 60000
BATCH_SIZE  = 256

# 批量化和打乱数据
train_dataset = tf.data.Dataset.from_tensor_slices(train_images).shuffle(BUFFER_SIZE).batch(BATCH_SIZE)

三、创建模型

1. 生成器

生成器使用 tf.keras.layers.Conv2DTranspose (上采样)层来从种子(随机噪声)中产生图片。以一个使用该种子作为输入的 Dense 层开始,然后多次上采样直到达到所期望的 28x28x1 的图片尺寸。注意除了输出层使用 tanh 之外,其他每层均使用 tf.keras.layers.LeakyReLU 作为激活函数。

def make_generator_model():
    model = tf.keras.Sequential([
        layers.Dense(7*7*256, use_bias=False, input_shape=(100,)),
        layers.BatchNormalization(),
        layers.LeakyReLU(),
        
        layers.Reshape((7, 7, 256)),
        
        layers.Conv2DTranspose(128, (5, 5), strides=(1, 1), padding='same', use_bias=False),
        layers.BatchNormalization(),
        layers.LeakyReLU(),
        
        layers.Conv2DTranspose(64, (5, 5), strides=(2, 2), padding='same', use_bias=False),
        layers.BatchNormalization(),
        layers.LeakyReLU(),
        
        layers.Conv2DTranspose(1, (5, 5), strides=(2, 2), padding='same', use_bias=False, activation='tanh')
    ])

    return model

generator = make_generator_model()
generator.summary()
Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
dense (Dense)                (None, 12544)             1254400   
_________________________________________________________________
batch_normalization (BatchNo (None, 12544)             50176     
_________________________________________________________________
leaky_re_lu (LeakyReLU)      (None, 12544)             0         
_________________________________________________________________
reshape (Reshape)            (None, 7, 7, 256)         0         
_________________________________________________________________
conv2d_transpose (Conv2DTran (None, 7, 7, 128)         819200    
_________________________________________________________________
batch_normalization_1 (Batch (None, 7, 7, 128)         512       
_________________________________________________________________
leaky_re_lu_1 (LeakyReLU)    (None, 7, 7, 128)         0         
_________________________________________________________________
conv2d_transpose_1 (Conv2DTr (None, 14, 14, 64)        204800    
_________________________________________________________________
batch_normalization_2 (Batch (None, 14, 14, 64)        256       
_________________________________________________________________
leaky_re_lu_2 (LeakyReLU)    (None, 14, 14, 64)        0         
_________________________________________________________________
conv2d_transpose_2 (Conv2DTr (None, 28, 28, 1)         1600      
=================================================================
Total params: 2,330,944
Trainable params: 2,305,472
Non-trainable params: 25,472
_________________________________________________________________

2. 判别器

判别器是一个基于 CNN 的图片分类器。

def make_discriminator_model():
    model = tf.keras.Sequential([
        layers.Conv2D(64, (5, 5), strides=(2, 2), padding='same', input_shape=[28, 28, 1]),
        layers.LeakyReLU(),
        layers.Dropout(0.3),
        
        layers.Conv2D(128, (5, 5), strides=(2, 2), padding='same'),
        layers.LeakyReLU(),
        layers.Dropout(0.3),
        
        layers.Flatten(),
        layers.Dense(1)
    ])

    return model

discriminator = make_discriminator_model()
discriminator.summary()
Model: "sequential_1"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
conv2d (Conv2D)              (None, 14, 14, 64)        1664      
_________________________________________________________________
leaky_re_lu_3 (LeakyReLU)    (None, 14, 14, 64)        0         
_________________________________________________________________
dropout (Dropout)            (None, 14, 14, 64)        0         
_________________________________________________________________
conv2d_1 (Conv2D)            (None, 7, 7, 128)         204928    
_________________________________________________________________
leaky_re_lu_4 (LeakyReLU)    (None, 7, 7, 128)         0         
_________________________________________________________________
dropout_1 (Dropout)          (None, 7, 7, 128)         0         
_________________________________________________________________
flatten (Flatten)            (None, 6272)              0         
_________________________________________________________________
dense_1 (Dense)              (None, 1)                 6273      
=================================================================
Total params: 212,865
Trainable params: 212,865
Non-trainable params: 0
_________________________________________________________________

四、定义损失函数和优化器

为两个模型定义损失函数和优化器。

# 该方法返回计算交叉熵损失的辅助函数
cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)

1. 判别器损失

该方法量化判断真伪图片的能力。它将判别器对真实图片的预测值与值全为 1 的数组进行对比,将判别器对伪造(生成的)图片的预测值与值全为 0 的数组进行对比。

def discriminator_loss(real_output, fake_output):
    real_loss = cross_entropy(tf.ones_like(real_output), real_output)
    fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output)
    total_loss = real_loss + fake_loss
    return total_loss

2. 生成器损失

生成器损失量化其欺骗判别器的能力。直观来讲,如果生成器表现良好,判别器将会把伪造图片判断为真实图片(或 1)。这里我们将把判别器在生成图片上的判断结果与一个值全为 1 的数组进行对比。

def generator_loss(fake_output):
    return cross_entropy(tf.ones_like(fake_output), fake_output)

由于我们需要分别训练两个网络,判别器和生成器的优化器是不同的。

generator_optimizer     = tf.keras.optimizers.Adam(1e-4)
discriminator_optimizer = tf.keras.optimizers.Adam(1e-4)

五、定义训练循环

EPOCHS = 60
noise_dim = 100
num_examples_to_generate = 16

# 我们将重复使用该种子(在 GIF 中更容易可视化进度)
seed = tf.random.normal([num_examples_to_generate, noise_dim])

训练循环在生成器接收到一个随机种子作为输入时开始。该种子用于生产一张图片。判别器随后被用于区分真实图片(选自训练集)和伪造图片(由生成器生成)。针对这里的每一个模型都计算损失函数,并且计算梯度用于更新生成器与判别器。

# 注意 `tf.function` 的使用
# 该注解使函数被“编译”
@tf.function
def train_step(images):
    # 生成噪音
    noise = tf.random.normal([BATCH_SIZE, noise_dim])

    with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
        generated_images = generator(noise, training=True)

        real_output = discriminator(images, training=True)
        fake_output = discriminator(generated_images, training=True)
        
        # 计算loss
        gen_loss = generator_loss(fake_output)
        disc_loss = discriminator_loss(real_output, fake_output)
    
    #计算梯度
    gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables)
    gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables)
    
    #更新模型
    generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables))
    discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables))
def train(dataset, epochs):
    for epoch in range(epochs):
        start = time.time()

        for image_batch in dataset:
            train_step(image_batch)

        # 实时更新生成的图片
        display.clear_output(wait=True)
        generate_and_save_images(generator, epoch + 1, seed)

        print ('Time for epoch  is  sec'.format(epoch + 1, time.time()-start))

    # 最后一个 epoch 结束后生成图片
    display.clear_output(wait=True)
    generate_and_save_images(generator, epochs, seed)

生成与保存图片

def generate_and_save_images(model, epoch, test_input):
    # 注意 training` 设定为 False
    # 因此,所有层都在推理模式下运行(batchnorm)。
    predictions = model(test_input, training=False)

    fig = plt.figure(figsize=(4,4))

    for i in range(predictions.shape[0]):
        plt.subplot(4, 4, i+1)
        plt.imshow(predictions[i, :, :, 0] * 127.5 + 127.5, cmap='gray')
        plt.axis('off')

    plt.savefig('./images/19/image_at_epoch_:04d.png'.format(epoch))
    plt.show()

六、训练模型

调用上面定义的 train() 方法来同时训练生成器和判别器。在训练之初,生成的图片看起来像是随机噪声。随着训练过程的进行,生成的数字将越来越真实。在大概 50 个 epoch 之后,这些图片看起来像是 MNIST 数字。

%%time:将会给出cell的代码运行一次所花费的时间。

%%time
train(train_dataset, EPOCHS)

Wall time: 4min 46s

七、创建 GIF

import imageio,pathlib

def compose_gif():
    # 图片地址
    data_dir = "./images/19"
    data_dir = pathlib.Path(data_dir)
    paths    = list(data_dir.glob('*'))
    
    gif_images = []
    for path in paths:
        gif_images.append(imageio.imread(path))
    imageio.mimsave("./pic_gif/MINST_DCGAN_19.gif",gif_images,fps=8)
    
compose_gif()
print("GIF动图生成完成!")
GIF动图生成完成!

八、同系列作品

🚀 深度学习新人必看:

  1. 小白入门深度学习 | 第一篇:配置深度学习环境
  2. 小白入门深度学习 | 第二篇:编译器的使用-Jupyter Notebook
  3. 小白入门深度学习 | 第三篇:深度学习初体验

🚀 卷积神经网络篇:

  1. 深度学习100例-卷积神经网络(CNN)实现mnist手写数字识别 | 第1天
  2. 深度学习100例-卷积神经网络(CNN)彩色图片分类 | 第2天
  3. 深度学习100例-卷积神经网络(CNN)服装图像分类 | 第3天
  4. 深度学习100例-卷积神经网络(CNN)花朵识别 | 第4天
  5. 深度学习100例-卷积神经网络(CNN)天气识别 | 第5天
  6. 深度学习100例-卷积神经网络(VGG-16)识别海贼王草帽一伙 | 第6天
  7. 深度学习100例-卷积神经网络(VGG-19)识别灵笼中的人物 | 第7天
  8. 深度学习100例-卷积神经网络(ResNet-50)鸟类识别 | 第8天
  9. 深度学习100例-卷积神经网络(AlexNet)手把手教学 | 第11天
  10. 深度学习100例-卷积神经网络(CNN)识别验证码 | 第12天
  11. 深度学习100例-卷积神经网络(Inception V3)识别手语 | 第13天
  12. 深度学习100例-卷积神经网络(Inception-ResNet-v2)识别交通标志 | 第14天
  13. 深度学习100例-卷积神经网络(CNN)实现车牌识别 | 第15天
  14. 深度学习100例-卷积神经网络(CNN)识别神奇宝贝小智一伙 | 第16天
  15. 深度学习100例-卷积神经网络(CNN)注意力检测 | 第17天

🚀 循环神经网络篇:

  1. 深度学习100例-循环神经网络(RNN)实现股票预测 | 第9天
  2. 深度学习100例-循环神经网络(LSTM)实现股票预测 | 第10天

🚀 生成对抗网络篇:

  1. 深度学习100例-生成对抗网络(GAN)手写数字生成 | 第18天

🚀 本文选自专栏:《深度学习100例》

未完~

持续更新 欢迎 点赞👍、收藏⭐、关注👀

  • 点赞👍:点赞给我持续更新的动力
  • 收藏⭐️:收藏后你能够随时找到文章
  • 关注👀:关注我第一时间接收最新文章

深度学习100例-生成对抗网络(dcgan)生成动漫小姐姐|第20天(代码片段)

文章目录一、前言二、什么是生成对抗网络?1.设置GPU2.加载和准备数据集三、创建模型1.生成器2.判别器四、定义损失函数和优化器1.判别器损失2.生成器损失五、保存检查点六、定义训练循环七、训练模型1.恢复模型参数2.训... 查看详情

深度学习100例-生成对抗网络(dcgan)生成动漫小姐姐|第20天(代码片段)

文章目录一、前言二、什么是生成对抗网络?1.设置GPU2.加载和准备数据集三、创建模型1.生成器2.判别器四、定义损失函数和优化器1.判别器损失2.生成器损失五、保存检查点六、定义训练循环七、训练模型1.恢复模型参数2.训... 查看详情

深度学习100例-生成对抗网络(gan)手写数字生成|第18天(代码片段)

🔱大家好,我是👉K同学啊,《深度学习100例》系列将持续更新欢迎点赞👍、收藏⭐、关注👀文章目录一、前期工作1.设置GPU2.定义训练参数二、什么是生成对抗网络1.简单介绍2.应用领域三、网络结构四... 查看详情

深度学习100例-生成对抗网络(gan)手写数字生成|第18天(代码片段)

🔱大家好,我是👉K同学啊,《深度学习100例》系列将持续更新欢迎点赞👍、收藏⭐、关注👀文章目录一、前期工作1.设置GPU2.定义训练参数二、什么是生成对抗网络1.简单介绍2.应用领域三、网络结构四... 查看详情

深度卷积生成对抗网络dcgan——生成手写数字图片(代码片段)

前言本文使用深度卷积生成对抗网络(DCGAN)生成手写数字图片,代码使用KerasAPI与tf.GradientTape编写的,其中tf.GradientTrape是训练模型时用到的。 本文用到imageio库来生成gif图片,如果没有安装的,需要安装... 查看详情

深度卷积对抗生成网络(dcgan)

本文是参考文献[1]的论文笔记。卷积神经网络在有监督学习中的各项任务上都有很好的表现,但在无监督学习领域,却比较少。本文介绍的算法将有监督学习中的CNN和无监督学习中的GAN结合到了一起。在非CNN条件下,LAPGAN在图像... 查看详情

keras深度学习实战(23)——dcgan详解与实现(代码片段)

Keras深度学习实战(23)——DCGAN详解与实现0.前言1.使用DCGAN生成手写数字图像2.使用DCGAN生成面部图像2.1模型分析2.2从零开始实现DCGAN生成面部图像小结系列链接0.前言在生成对抗网络(GenerativeAdversarialNetworks,GAN)一节中,我们使用... 查看详情

深度卷积生成对抗网络dcgan

...成网络GGG和判别网络DDD使用的都是前馈神经网络MLP。随着深度学习技术的发展,得益于卷积神经网络CNN在图像领域的成功,在DCGAN[2]中尝试将CNN与GAN相结合,用CNN网络替换GAN的生成网络GGG和判别网络DDD中的MLP,同... 查看详情

深度卷积生成对抗网络dcgan

...成网络GGG和判别网络DDD使用的都是前馈神经网络MLP。随着深度学习技术的发展,得益于卷积神经网络CNN在图像领域的成功,在DCGAN[2]中尝试将CNN与GAN相结合,用CNN网络替换GAN的生成网络GGG和判别网络DDD中的MLP,同... 查看详情

《深度学习100例》数据和代码(代码片段)

《深度学习100例》分为《深度学习基础50例》与《深度学习进阶50例》,大家可以选择一次性订阅《深度学习100例》也可以分开订阅。《深度学习基础50例》:主要讲解深度学习中的一些基础算法,主要体现在目标识别... 查看详情

《深度学习100例》数据和代码(代码片段)

《深度学习100例》分为《深度学习基础50例》与《深度学习进阶50例》,大家可以选择一次性订阅《深度学习100例》也可以分开订阅。《深度学习基础50例》:主要讲解深度学习中的一些基础算法,主要体现在目标识别,以及循环... 查看详情

keras深度学习实战(23)——dcgan详解与实现(代码片段)

Keras深度学习实战(23)——DCGAN详解与实现0.前言1.使用DCGAN生成手写数字图像2.使用DCGAN生成面部图像2.1模型分析2.2从零开始实现DCGAN生成面部图像小结系列链接0.前言在生成对抗网络(GenerativeAdversarialNetworks,GAN)一节中,... 查看详情

手把手写深度学习:用gans生成手写数字(代码片段)

前言:2014年GANs在NPIS大会上被提出,但是因为种种原因沉寂了两年,直到DCGANs横空出世,将GAN和CNN完美结合,才真正打开了GANs井喷时代,一下子成为最强风口。好几年过去了,热度有增无减。这一讲从... 查看详情

手把手写深度学习:用gans生成手写数字(代码片段)

前言:2014年GANs在NPIS大会上被提出,但是因为种种原因沉寂了两年,直到DCGANs横空出世,将GAN和CNN完美结合,才真正打开了GANs井喷时代,一下子成为最强风口。好几年过去了,热度有增无减。这一讲从... 查看详情

学习手写数字生成(代码片段)

...动地址:CSDN21天学习挑战赛🍨本文为🔗365天深度学习训练营中的学习记录博客🍦参考文章地址:🔗深度学习100例-生成对抗网络(GAN)手写数字生成|第18天🍖作者:K同学啊敲例子今天敲的... 查看详情

学习手写数字生成(代码片段)

...动地址:CSDN21天学习挑战赛🍨本文为🔗365天深度学习训练营中的学习记录博客🍦参考文章地址:🔗深度学习100例-生成对抗网络(GAN)手写数字生成|第18天🍖作者:K同学啊敲例子今天敲的... 查看详情

机器学习算法之dcgan(代码片段)

...模型。GAN是一种生成式对抗网络,即通过对抗的方式,去学习数据分布的生成式模型。所谓的对抗,指的是生成网络和判别网络的互相对抗。生成网络尽可能生成逼真样本,判别网络则尽可能去判别该样本是真实样本,还是生成... 查看详情

深度学习generativeadversarialnetworks,gan生成对抗网络分类(代码片段)

目录1思维导图2大纲3经典GAN简介3.1SGAN3.2ConditionalGAN3.3BidirectionalGAN(BiGAN)3.4InfoGAN3.5AuxiliaryClassifierGAN(AC-GAN)3.6BoundaryEquilibriumGAN(BEGAN)3.7Self-attentionGAN(SAGAN)3.8DeepConvolutionalGAN(DCGAN) 查看详情