一个抓包案例分析tcp的三次握手/四次挥手(代码片段)

androidstarjack androidstarjack     2022-12-07     625

关键词:

点击上方关注 “终端研发部


 

设为“星标”,和你一起掌握更多数据库知识

本文将展示如何使用 tcpdump 抓包,以及如何用 tcpdump 和 wireshark 分析网络流量。文中的例子比较简单,适合作为入门参考。

1 基础环境准备

为方便大家跟着上手练习,本文将搭建一个容器环境。

1.1 Pull Docker 镜像

$ sudo docker pull alpine:3.8

1.2 运行容器

$ sudo docker run -d --name ctn-1 alpine:3.8 sleep 3600d
$ sudo docker ps
CONTAINER ID    IMAGE        COMMAND         CREATED        STATUS          PORTS  NAMES
233bc36bde4b    alpine:3.8   "sleep 3600d"   1 minutes ago  Up 14 minutes           ctn-1

进入容器:

$ sudo docker exec -it ctn-1 sh

查看容器网络信息:

/ # ifconfig
eth0      Link encap:Ethernet  HWaddr 02:42:AC:11:00:09
          inet addr:172.17.0.9  Bcast:0.0.0.0  Mask:255.255.0.0

1.3 安装 tcpdump

/ # apk update
/ # apk add tcpdump

2 HTTP/TCP 抓包

接下来我们用 wget 获取一个网站的首页文件(index.html),同时 tcpdump 抓包,对抓 到的网络流量进行分析。

2.1 HTTP 请求:下载测试页面

example.com 是一个测试网站,wget 是一个 linux 命令行工 具,可以下载网络文件。

如下命令可以下载一个 example.com 网站的首页文件 index.html:

/ # wget http://example.com
Connecting to example.com (93.184.216.34:80)
index.html           100% |*****************************|  1270   0:00:00 ETA

虽然这看起来极其简单,但背后却涵盖了很多复杂的过程,例如:

  1. 域名查找:通过访问 DNS 服务查找 example.com 服务器对应的 IP 地址

  2. TCP 连接参数初始化:临时端口、初始序列号的选择等等

  3. 客户端(容器)通过 TCP 三次握手协议和服务器 IP 建立 TCP 连接

  4. 客户端发起 HTTP GET 请求

  5. 服务器返回 HTTP 响应,包含页面数据传输

  6. 如果页面超过一个 MTU,会分为多个 packet 进行传输(后面会看到,确实超过 MTU 了)

  7. TCP 断开连接的四次挥手

2.2 抓包:打到标准输出

用下面的 tcpdump 命令抓包,另一窗口执行 wget http://example.com,能看到如下类 似的输出。为了方便后面的讨论,这里将一些字段去掉了,并做了适当的对齐:

/ # tcpdump -n -S -i eth0 host example.com
1  02:52:44.513700 IP 172.17.0.9.41038 > 93.184.216.34.80: Flags [S] , seq 3310420140,                            length 0
2  02:52:44.692890 IP 93.184.216.34.80 > 172.17.0.9.41038: Flags [S.], seq 1353235534,            ack 3310420141, length 0
3  02:52:44.692953 IP 172.17.0.9.41038 > 93.184.216.34.80: Flags [.] ,                            ack 1353235535, length 0
4  02:52:44.693009 IP 172.17.0.9.41038 > 93.184.216.34.80: Flags [P.], seq 3310420141:3310420215, ack 1353235535, length 74: HTTP: GET / HTTP/1.1
5  02:52:44.872266 IP 93.184.216.34.80 > 172.17.0.9.41038: Flags [.] ,                            ack 3310420215, length 0
6  02:52:44.873342 IP 93.184.216.34.80 > 172.17.0.9.41038: Flags [.] , seq 1353235535:1353236983, ack 3310420215, length 1448: HTTP: HTTP/1.1 200 OK
7  02:52:44.873405 IP 172.17.0.9.41038 > 93.184.216.34.80: Flags [.] ,                            ack 1353236983, length 0
8  02:52:44.874533 IP 93.184.216.34.80 > 172.17.0.9.41038: Flags [P.], seq 1353236983:1353237162, ack 3310420215, length 179: HTTP
9  02:52:44.874560 IP 172.17.0.9.41038 > 93.184.216.34.80: Flags [.] ,                            ack 1353237162, length 0
10 02:52:44.874705 IP 172.17.0.9.41038 > 93.184.216.34.80: Flags [F.], seq 3310420215,            ack 1353237162, length 0
11 02:52:45.053732 IP 93.184.216.34.80 > 172.17.0.9.41038: Flags [.] ,                            ack 3310420216, length 0
12 02:52:45.607825 IP 93.184.216.34.80 > 172.17.0.9.41038: Flags [F.], seq 1353237162,            ack 3310420216, length 0
13 02:52:45.607869 IP 172.17.0.9.41038 > 93.184.216.34.80: Flags [.] ,                            ack 1353237163, length 0

参数说明:

  • -n:打印 IP 而不是 hostname,打印端口号而不是协议(例如打印 80 而不是 http)

  • -S:打印绝对时间戳

  • -i eth0:指定从 eth0 网卡抓包

  • host example.com:抓和 example.com 通信的包(双向)

更多 tcpdump 的常用命令,可以参考 tcpdump: An Incomplete Guide。

2.3 抓包:存文件

-w 命令可以将抓到的包写到文件,注意这和用重定向方式将输出写到文件是不同的。后者写的只是标准输出打印的 LOG,而 -w 写的是原始包。

/ # tcpdump -i eth0 host example.com -w example.pcap
^C
13 packets captured
13 packets received by filter
0 packets dropped by kernel

生成的 pcap 文件可以用 tcpdump 或者 wireshark 之类的网络流量分析工具打开。

3 流量分析:tcpdump

如果不指定输出的话,tcpdump 会直接将信息打到标准输出,就是我们上面看到的那样。从这些输出里,我们看到很多信息。

3.1 每列说明

第 1 列是为了讨论方便而加的行号,实际的 tcpdump 输出并没有这一列。接下来将用 # 号加数字表示第几个包,例如 #3 表示第 3 个包。

接下来依次为:

  • packet 时间戳,例如 02:52:44.513700 表示抓到这个包的时间是** 02 时 52 分 44 秒 513 毫秒**

  • packet 类型,这里是 IP 包

  • 源 (SRC) IP 和端口,目的 (DST) IP 和端口

  • packet TCP flags,其中

    • S 表示 syn 包

    • . 表示 ack 包

    • F 表示 fin 包

    • P 表示 push 包(发送正常数据)

  • 序列号(seq)

  • 应答号(ack)

  • 包的 payload 长度

  • 包的部分内容(ASCII)

3.2 三次握手(1~3)

wget 是基于 HTTP 协议,因此它在下载文件之前,必定要和服务端建立一个连接。

而 TCP 建立连接的过程就是著名的三次握手 [4]:

  1. client -> server: SYN

  2. server -> client: SYN+ACK

  3. client -> server: ACK

我们可以看到,这刚好对应于前三个包:

1  02:52:44.513700 IP 172.17.0.9.41038 > 93.184.216.34.80: Flags [S] , seq 3310420140,                 length 0
2  02:52:44.692890 IP 93.184.216.34.80 > 172.17.0.9.41038: Flags [S.], seq 1353235534, ack 3310420141, length 0
3  02:52:44.692953 IP 172.17.0.9.41038 > 93.184.216.34.80: Flags [.] ,                 ack 1353235535, length 0

第一次握手: SYN

#1 包含以下信息:

  1. 02:52:44.513700 时刻,客户端主动向 server(93.184.216.34)发起一个 SYN 请求,请求建立连接

  2. 客户端请求的服务端端口是 80(HTTP 服务默认 80 端口),客户端使用的是临时端口(大于 1024)41038

  3. #1 序列号是 3310420140,这是客户端的初始序列号(客户端和服务端分别维护自己的序列号,两者没有关系;另外,初始序列号是系统选择的,一般不是 0)

  4. #1 length 为 0,因为 SYN 包不带 TCP payload,所有信息都在 TCP header

第二次握手: SYN+ACK

#2 的 ack 是 3310420140,等于 #1 的 seq 加 1,这就说明,#2 是 #1 的应答包。

这个应答包的特点:

  1. TCP flags 为 S.,即 SYN+ACK

  2. length 也是 0,说明没有 payload

  3. seq 为 1353235534,这是服务端的初始序列号

  4. 到达 eth0 的时间为 02:52:44.692890,说明时间过了 18ms

第三次握手: ACK

同理,#3 的 ack 等于 #2 的 seq 加 1,说明 #3 是 #2 的应答包。

这个包的特点:

  1. TCP flags 为 .,即 ACK

  2. 长度为 0,说明没有 TCP payload

至此,三次握手完成。

3.3 正常数据传输

三次握手完成后,client 和 server 开始 HTTP 通信,客户端通过 HTTP GET 方法下载 index.html。

4  02:52:44.693009 IP 172.17.0.9.41038 > 93.184.216.34.80: Flags [P.], seq 3310420141:3310420215, ack 1353235535, length 74: HTTP: GET / HTTP/1.1
5  02:52:44.872266 IP 93.184.216.34.80 > 172.17.0.9.41038: Flags [.] ,                            ack 3310420215, length 0
6  02:52:44.873342 IP 93.184.216.34.80 > 172.17.0.9.41038: Flags [.] , seq 1353235535:1353236983, ack 3310420215, length 1448: HTTP: HTTP/1.1 200 OK
7  02:52:44.873405 IP 172.17.0.9.41038 > 93.184.216.34.80: Flags [.] ,                            ack 1353236983, length 0
8  02:52:44.874533 IP 93.184.216.34.80 > 172.17.0.9.41038: Flags [P.], seq 1353236983:1353237162, ack 3310420215, length 179: HTTP
9  02:52:44.874560 IP 172.17.0.9.41038 > 93.184.216.34.80: Flags [.] ,                            ack 1353237162, length 0

这里可以看到:

  1. #4: client 向 server 发起 HTTP GET 请求,请求路径为根路径(/),这个 packet 长度为 74 字节

  2. #5: 发送了 ACK 包,对 #4 进行确认

  3. #6: 发送了 1448 字节的数据给 client

  4. #7: client 对 server 的 #6 进行应答

  5. #8: server 向 client 端继续发送 179 字节数据

  6. #9: client 对 server 的 #8 进行应答

3.4 四次挥手

最后是四次挥手 [5]:

  1. client -> server: FIN (我们看到的是 FIN+ACK,这是因为这个 FIN 包除了正常的关闭连接功能之外,还被用于应答 client 发过来的前一个包)

  2. server -> client: ACK

  3. server -> client: FIN+ACK

  4. client -> server: ACK

10 02:52:44.874705 IP 172.17.0.9.41038 > 93.184.216.34.80: Flags [F.], seq 3310420215, ack 1353237162, length 0
11 02:52:45.053732 IP 93.184.216.34.80 > 172.17.0.9.41038: Flags [.] ,                 ack 3310420216, length 0
12 02:52:45.607825 IP 93.184.216.34.80 > 172.17.0.9.41038: Flags [F.], seq 1353237162, ack 3310420216, length 0
13 02:52:45.607869 IP 172.17.0.9.41038 > 93.184.216.34.80: Flags [.] ,                 ack 1353237163, length 0

4 流量分析:wireshark

tcpdump 可以指定 -r 读取 pcap 文件,并以指定的格式输出包的信息,最后输出的内容 和上面看到的类似。我们上面的流量非常简单,所以看 tcpdump 的输出就够了。

对于复杂的 pcap,例如,其中包含了上百个 IP 地址、上千个端口、上万个连接的 pcap, 通过 tcpdump 看输出可能就比较低效了。

这时,wireshark 这样带图形用户界面,且功能强大的网 络流分析工具就派上了用场。

wireshark 支持强大的过滤功能,支持按 IP、端口、协议、连接、TCP flag 以及它们的各 种组合进行过滤,然后进行分析,大大节省网络排障的时间。

wireshark 官方维护了一个 sample pcap列表 ,我们拿 iperf-mptcp-0-0.pcap 作为例子来展示如何使用 wireshark。

4.1 追踪 TCP 流

下载后双击就可以用 wireshark 打开。看到有重传(TCP Retransmition)的包:

在重传的包上,右键 -> Follow -> TCP Stream,会过滤出只属于这个连接的包:

我们看到,这个连接只有 3 个包:

  1. #1 在 08:00:05.125 发送出去,请求建立连接

  2. 大约 1s 后,客户端仍然没有收到服务端的 ACK 包,触发客户端 TCP 超时重传

  3. 又过了大约 2s,仍然没有收到 ACK 包,再次触发超时重传

  4. 这里其实还可以看出 TCP 重传的机制:指数后退,比如第一次等待 1s,第二次等 待 2s,第三次等待 4s,第四次 8s

因此,从这个抓包文件看,这次连接没有建立起来,而直接原因就是 client 没有收到 server 的应答包。要跟进这个问题,就需要在 server 端一起抓包,看应答包是否有发出来 。本文不对此展开。

4.2 过滤流

上面的截图我们看到 wireshark 里有 tcp.stream eq 1,这其实就是其强大的过滤表达式。

我们可以直接手写表达式,然后回车,符合条件的包就会显示出来。而且,在编辑表达式的 时候,wireshark 有自动提示,还是比较方便的。这些表达式和 tcpdump 的 filter 表达 式很类似,如果熟悉 tcpdump,那这里不会有太大困难。

下面举一些例子:

  1. ip.addr == 192.168.1.1 过滤 SRC IP 或 DST IP 是 192.168.1.1 的包

  2. ip.src_host == 192.168.1.1 and ip.dst_host == 192.168.1.2 过滤 SRC IP 是 192.168.1.1,并且 DST IP 是 192.168.1.2 的包

  3. tcp.port == 80 源端口或目的端口是 80 的包

  4. tcp.flags.reset == 1 过滤 TCP RST 包。先找到 RST 包,然后右键 Follow -> TCP Stream 是常用的排障方式

  5. tcp.analysis.retransmission 过滤所有的重传包

4.3 导出符合条件的包

有时 pcap 文件太大,导致 wireshark 非常慢,而大部分数据包可能是不需要的。在这种情况 下,可以先用过滤条件筛选出感兴趣的包,然后 File -> Export Specified Packets ... ,弹出的对话框里,可以选择当前显示的包,或者某个指定区间的包另存为新 pcap。

然后就可以关闭原来的 pcap,打开新的 pcap 进行分析。

5 总结

tcpdump 和 wireshark 功能非常强大,组合起来更是网络排障的首选利器。这里介绍的内容只是九牛一毛,更多的时候,你需要 tcpdump+wireshark+google。

来源:http://arthurchiao.art/blog/tcpdump-practice-zh/


 

写在最后的话

大家看完有什么不懂的可以在下方留言讨论,也可以私信问我一般看到后我都会回复的。最后觉得文章对你有帮助的话记得点个赞哦,点点关注不迷路
@终端研发部
每天都有新鲜的干货分享!

回复 【idea激活】即可获得idea的激活方式
回复 【Java】获取java相关的视频教程和资料
回复 【SpringCloud】获取SpringCloud相关多的学习资料
回复 【python】获取全套0基础Python知识手册
回复 【2020】获取2020java相关面试题教程
回复 【加群】即可加入终端研发部相关的技术交流群
阅读更多
用 Spring 的 BeanUtils 前,建议你先了解这几个坑!

lazy-mock ,一个生成后端模拟数据的懒人工具

在华为鸿蒙 OS 上尝鲜,我的第一个“hello world”,起飞!

字节跳动一面:i++ 是线程安全的吗?

一条 SQL 引发的事故,同事直接被开除!!

太扎心!排查阿里云 ECS 的 CPU 居然达100%

一款vue编写的功能强大的swagger-ui,有点秀(附开源地址)


相信自己,没有做不到的,只有想不到的在这里获得的不仅仅是技术!



点“在看”支持小于哥呀,谢谢啦

tcp的三次握手和四次挥手

待更!! 参考:TCP协议的三次握手和四次挥手 TCP三次握手和四次挥手状态变迁解析 wireshark抓包图解TCP三次握手/四次挥手详解 查看详情

初识socket,通过抓包分析tcp的三次握手,四次挥手

...连接部分。服务端需要bindlistenaccept,多个客户端可以连接一个服务端。连接上Socket后,发消息时,用Wireshark网络封包分析工具,抓到以下数据。我们来看一下TCP的三次握手。用上面蓝色线代表服务端,下面代表客户端。中间箭头... 查看详情

wireshark抓包分析tcp协议:三次握手和四次挥手

...个底层协议的工作原理是非常有必要的!UDP协议作为一个不可靠的传输层协议,工作过程相对比较简单!所以我们就重点来大家讲一下TCP协议。Wireshark抓包分析TCP协议为了更好的学习和理解TCP协议的连接和断开连接的... 查看详情

wireshark抓包分析tcp协议:三次握手和四次挥手

前言面试中我们经常会被问到TCP协议的三次握手和四次挥手的过程,为什么总喜欢问这个问题呢?其实我们平时使用的很多协议都是应用层协议,比如HTTP协议,https协议,DNS协议,FTP协议等;而应用层... 查看详情

抓包分析tcp的三次握手和四次握手

...p;     在上一篇《怎样对Android设备进行抓包》中提到了,server的开发者须要我bug重现然后提供抓包给他们分析。所以抓好包自己也试着分析了一下。发现里面全是一些TCP协议和HTTP协议。所以要想进行抓包分析... 查看详情

图解tcp的三次握手和四次挥手

...四次挥手三次握手三次握手过程(1)客户端发送一个SYN0给服务器(选择初始序列号,不携带任何数据)(2)服务器收到SYN0, 查看详情

图解tcp的三次握手和四次挥手

...四次挥手三次握手三次握手过程(1)客户端发送一个SYN0给服务器(选择初始序列号,不携带任何数据)(2)服务器收到SYN0, 查看详情

关于tcp/ip的三次握手和四次挥手解释

...控制协议,提供可靠的连接服务,采用三次握手确认建立一个连接:位码即tcp标志位,有6种标示:SYN(synchronous建立联机)ACK(acknowledgement确认)PSH(push传送)FIN(finish结束)RST(reset重置)URG(urgent紧 查看详情

tcp的三次握手和四次挥手

这篇文章讲的很详细:三次握手和四次挥手 查看详情

tcp的三次握手与四次挥手(代码片段)

TCP的三次握手与四次挥手一、TCP(TransmissionControlProtocol传输控制协议)TCP是面向对连接,可靠的进程到进程通信的协议TCP是提供全双工服务,即数据可在同一时间双向传输二、TCP报文段(封装在IP数据报中)1、端口号1)源端口号... 查看详情

tcp协议的三次握手和四次挥手

...,提供可靠的连接服务,需要三次握手建立连接,而终止一个连接要经过四次挥手。三次握手第一次握手:客户端申请连接(SYN=1),发送seq=x的数据包,等待服务器确认。第二次握手:服务器端申请连接(SYN=1),确认收到客户端的申... 查看详情

tcp传输的三次握手四次挥手策略

TCP传输的三次握手:首先发送端(前端)发送一个带有SYN标志的数据包给对方。1. 接收端(后端)收到后,回传一个带有SYN/ACK标志的数据包以表示传达确认信息。2. 发送端(前端)在回传一个带ACK标志的数据包,代表“... 查看详情

tcp的三次握手和四次挥手

...号seq(A)=x。(其中报文中同步标志位SYN=1,ACK=0,表示这是一个TCP连接请求数据报文;序号seq=x,表明传输数据时的第一个数据字节的序号是x);主机B收到请求后,会 查看详情

tcp协议tcp的三次握手和四次挥手

文章目录前言TCP连接的三个阶段TCP数据报介绍TCP三次握手(Three-wayHandshake)三次握手的过程握手过程说明为什么需要三次?两次握手会发生什么问题?数据传输TCP四次挥手四次挥手的过程挥手过程说明握手需要三次,为... 查看详情

tcp协议tcp的三次握手和四次挥手

文章目录前言TCP连接的三个阶段TCP数据报介绍TCP三次握手(Three-wayHandshake)三次握手的过程握手过程说明为什么需要三次?两次握手会发生什么问题?数据传输TCP四次挥手四次挥手的过程挥手过程说明握手需要三次,为... 查看详情

tcp三次握手四次挥手(代码片段)

...析。ping走的协议就包括DNS、ARP和ICMP。接着使用Wireshark去抓包,抓包这里导航栏直接过滤ip就可以了,输入ip.host==183.232.231.174接着直接在浏览器输入百度域名www.baidu.com访问请求,Wireshark就能抓取包来分析了这里我们可以看到,本... 查看详情

tcp协议的三次握手和四次挥手

TCP协议的三次握手和四次挥手一.过程总览  建立TCP连接需要三次握手,而断开连接则需要四次挥手,整个过程如下图所示:二.报文细节2.1建立连接的三次握手报文细节  首先Client端发送连接请求报文,Server段接受连接后回... 查看详情

说说tcp的三次握手和四次挥手(代码片段)

...层通信协议。TCP将用户数据打包成报文段,它发送后启动一个定时器,另一端收到的数据进行确认、对失序的数据重新排序、丢弃重复数据。TCP把连接作为最基本的对象,每一条TCP连接 查看详情