基于tensorflow+opencv实现cnn自定义图像分类

华为云开发者社区      2022-02-17     154

关键词:

摘要:本篇文章主要通过Tensorflow+Opencv实现CNN自定义图像分类案例,它能解决我们现实论文或实践中的图像分类问题,并与机器学习的图像分类算法进行对比实验。

本文分享自华为云社区《​​Tensorflow+Opencv实现CNN自定义图像分类及与KNN图像分类对比​​》,作者:eastmount 。

一.图像分类

图像分类(Image Classification)是对图像内容进行分类的问题,它利用计算机对图像进行定量分析,把图像或图像中的区域划分为若干个类别,以代替人的视觉判断。图像分类的传统方法是特征描述及检测,这类传统方法可能对于一些简单的图像分类是有效的,但由于实际情况非常复杂,传统的分类方法不堪重负。现在,广泛使用机器学习和深度学习的方法来处理图像分类问题,其主要任务是给定一堆输入图片,将其指派到一个已知的混合类别中的某个标签。


在下图中,图像分类模型将获取单个图像,并将为4个标签{cat,dog,hat,mug},分别对应概率{0.6, 0.3, 0.05, 0.05},其中0.6表示图像标签为猫的概率,其余类比。该图像被表示为一个三维数组。在这个例子中,猫的图像宽度为248像素,高度为400像素,并具有红绿蓝三个颜色通道(通常称为RGB)。因此,图像由248×400×3个数字组成或总共297600个数字,每个数字是一个从0(黑色)到255(白色)的整数。图像分类的任务是将这接近30万个数字变成一个单一的标签,如“猫(cat)”。

那么,如何编写一个图像分类的算法呢?又怎么从众多图像中识别出猫呢?这里所采取的方法和教育小孩看图识物类似,给出很多图像数据,让模型不断去学习每个类的特征。在训练之前,首先需要对训练集的图像进行分类标注,如图所示,包括cat、dog、mug和hat四类。在实际工程中,可能有成千上万类别的物体,每个类别都会有上百万张图像。

图像分类是输入一堆图像的像素值数组,然后给它分配一个分类标签,通过训练学习来建立算法模型,接着使用该模型进行图像分类预测,具体流程如下:


  • 输入: 输入包含N个图像的集合,每个图像的标签是K种分类标签中的一种,这个集合称为训练集。
  • 学习: 第二步任务是使用训练集来学习每个类的特征,构建训练分类器或者分类模型。
  • 评价: 通过分类器来预测新输入图像的分类标签,并以此来评价分类器的质量。通过分类器预测的标签和图像真正的分类标签对比,从而评价分类算法的好坏。如果分类器预测的分类标签和图像真正的分类标签一致,表示预测正确,否则预测错误。


常见的分类算法包括朴素贝叶斯分类器、决策树、K最近邻分类算法、支持向量机、神经网络和基于规则的分类算法等,同时还有用于组合单一类方法的集成学习算法,如Bagging和Boosting等。

二.基于KNN算法的图像分类

1.KNN算法

K最近邻分类(K-Nearest Neighbor Classifier)算法是一种基于实例的分类方法,是数据挖掘分类技术中最简单常用的方法之一。该算法的核心思想是从训练样本中寻找所有训练样本X中与测试样本距离(欧氏距离)最近的前K个样本(作为相似度),再选择与待分类样本距离最小的K个样本作为X的K个最邻近,并检测这K个样本大部分属于哪一类样本,则认为这个测试样本类别属于这一类样本。


假设现在需要判断下图中的圆形图案属于三角形还是正方形类别,采用KNN算法分析如下:

  • 当K=3时,图中第一个圈包含了三个图形,其中三角形2个,正方形一个,该圆的则分类结果为三角形。
  • 当K=5时,第二个圈中包含了5个图形,三角形2个,正方形3个,则以3:2的投票结果预测圆为正方形类标。设置不同的K值,可能预测得到不同的结果。


简而言之,一个样本与数据集中的k个最相邻样本中的大多数的类别相同。由其思想可以看出,KNN是通过测量不同特征值之间的距离进行分类,而且在决策样本类别时,只参考样本周围k个“邻居”样本的所属类别。因此比较适合处理样本集存在较多重叠的场景,主要用于预测分析、文本分类、降维等处理。


KNN在Sklearn机器学习包中,实现的类是neighbors.KNeighborsClassifier,简称KNN算法。构造方法为:

KNeighborsClassifier(algorithm='ball_tree', 
leaf_size=30,
metric='minkowski',
metric_params=None,
n_jobs=1,
n_neighbors=3,
p=2,
weights='uniform')


KNeighborsClassifier可以设置3种算法:brute、kd_tree、ball_tree,设置K值参数为n_neighbors=3。调用方法如下:

  • from sklearn.neighbors import KNeighborsClassifier
  • knn = KNeighborsClassifier(n_neighbors=3, algorithm=“ball_tree”)


它包括两个步骤:

  • 训练:nbrs.fit(data, target)
  • 预测:pre = clf.predict(data)

2.数据集

该部分主要使用Scikit-Learn包进行Python图像分类处理。Scikit-Learn扩展包是用于Python数据挖掘和数据分析的经典、实用扩展包,通常缩写为Sklearn。Scikit-Learn中的机器学习模型是非常丰富的,包括线性回归、决策树、SVM、KMeans、KNN、PCA等等,用户可以根据具体分析问题的类型选择该扩展包的合适模型,从而进行数据分析,其安装过程主要通过“pip install scikit-learn”实现。


实验所采用的数据集为Sort_1000pics数据集,该数据集包含了1000张图片,总共分为10大类,分别是人(第0类)、沙滩(第1类)、建筑(第2类)、大卡车(第3类)、恐龙(第4类)、大象(第5类)、花朵(第6类)、马(第7类)、山峰(第8类)和食品(第9类),每类100张。如图所示。

接着将所有各类图像按照对应的类标划分至“0”至“9”命名的文件夹中,如图所示,每个文件夹中均包含了100张图像,对应同一类别。

比如,文件夹名称为“6”中包含了100张花的图像,如下图所示。

3.KNN图像分类

下面是调用KNN算法进行图像分类的完整代码,它将1000张图像按照训练集为70%,测试集为30%的比例随机划分,再获取每张图像的像素直方图,根据像素的特征分布情况进行图像分类分析。KNeighborsClassifier()核心代码如下:

  • from sklearn.neighbors import KNeighborsClassifier
  • clf = KNeighborsClassifier(n_neighbors=11).fit(XX_train, y_train)
  • predictions_labels = clf.predict(XX_test)


完整代码及注释如下:

# -*- coding: utf-8 -*-
import os
import cv2
import numpy as np
from sklearn.cross_validation import train_test_split
from sklearn.metrics import confusion_matrix, classification_report

#----------------------------------------------------------------------------------
# 第一步 切分训练集和测试集
#----------------------------------------------------------------------------------

X = [] #定义图像名称
Y = [] #定义图像分类类标
Z = [] #定义图像像素

for i in range(0, 10):
#遍历文件夹,读取图片
for f in os.listdir("photo/%s" % i):
#获取图像名称
X.append("photo//" +str(i) + "//" + str(f))
#获取图像类标即为文件夹名称
Y.append(i)

X = np.array(X)
Y = np.array(Y)

#随机率为100% 选取其中的30%作为测试集
X_train, X_test, y_train, y_test = train_test_split(X, Y,
test_size=0.3, random_state=1)

print len(X_train), len(X_test), len(y_train), len(y_test)

#----------------------------------------------------------------------------------
# 第二步 图像读取及转换为像素直方图
#----------------------------------------------------------------------------------

#训练集
XX_train = []
for i in X_train:
#读取图像
#print i
image = cv2.imread(i)

#图像像素大小一致
img = cv2.resize(image, (256,256),
interpolation=cv2.INTER_CUBIC)

#计算图像直方图并存储至X数组
hist = cv2.calcHist([img], [0,1], None,
[256,256], [0.0,255.0,0.0,255.0])

XX_train.append(((hist/255).flatten()))

#测试集
XX_test = []
for i in X_test:
#读取图像
#print i
image = cv2.imread(i)

#图像像素大小一致
img = cv2.resize(image, (256,256),
interpolation=cv2.INTER_CUBIC)

#计算图像直方图并存储至X数组
hist = cv2.calcHist([img], [0,1], None,
[256,256], [0.0,255.0,0.0,255.0])

XX_test.append(((hist/255).flatten()))

#----------------------------------------------------------------------------------
# 第三步 基于KNN的图像分类处理
#----------------------------------------------------------------------------------

from sklearn.neighbors import KNeighborsClassifier
clf = KNeighborsClassifier(n_neighbors=11).fit(XX_train, y_train)
predictions_labels = clf.predict(XX_test)

print u'预测结果:'
print predictions_labels

print u'算法评价:'
print (classification_report(y_test, predictions_labels))

#输出前10张图片及预测结果
k = 0
while k<10:
#读取图像
print X_test[k]
image = cv2.imread(X_test[k])
print predictions_labels[k]
#显示图像
cv2.imshow("img", image)
cv2.waitKey(0)
cv2.destroyAllWindows()
k = k + 1

代码中对预测集的前十张图像进行了显示,其中“818.jpg”图像如图所示,其分类预测的类标结果为“8”,表示第8类山峰,预测结果正确。

下图展示了“452.jpg”图像,其分类预测的类标结果为“4”,表示第4类恐龙,预测结果正确。

下图展示了“507.jpg”图像,其分类预测的类标结果为“7”,错误地预测为第7类恐龙,其真实结果应该是第5类大象。

使用KNN算法进行图像分类实验,最后算法评价的准确率(Precision)、召回率(Recall)和F值(F1-score)如图所示,其中平均准确率为0.64,平均召回率为0.55,平均F值为0.50,其结果不是非常理想。那么,如果采用CNN卷积神经网络进行分类,通过不断学习细节是否能提高准确度呢?

三.Tensorflow+Opencv实现CNN图像分类

首先,我们需要在TensorFlow环境下安装OpenCV扩展包;其次需要通过TensorFlow环境搭建CNN神经网络;最后通过不断学实现图像分类实验。

1.OpenCV库安装

第一步,打开Anaconda程序,并选择已经安装好的“TensorFlow”环境,运行Spyder。

第二步,我们需要在TensorFlow环境中安装opencv-python扩展包,否则会提示错误“ModuleNotFoundError: No module named ‘cv2’”。调用Anaconda Prompt安装即可,如下图所示:

activate tensorflow
pip install opencv-python

安装成功如下图所示。

但是,由于anaconda的.org服务器在国外,下载速度很慢,提示错误“Anaconda An HTTP error occurred when trying to retrieve this URL.HTTP errors are often intermittent”。


由于第一种方法一直失败,这里推荐读者尝试第二种方法,同时作者会将“opencv_python-4.1.2-cp36-cp36m-win_amd64.whl”文件上传供大家直接使用。(4.1.2代表opencv的版本,cp36代表用的python3.6,并且是64位)。

第三步,调用PIP安装本地opencv扩展包。

activate tensorflow
pip install C:\Users\xiuzhang\Desktop\TensorFlow\opencv_python-4.1.2-cp36-cp36m-win_amd64.whl

这种方法非常迅速,推荐大家使用。安装成功之后,开始编写我们的代码吧!

2.读取文件夹图像

该部分具体步骤如下:

  • 定义函数read_img(),读取文件夹“photo”中“0”到“9”的图像
  • 调用cv2.imread()函数循环获取每张图片的所有像素值,并通过
    cv2.resize()统一修改为32*32大小
  • 依次获取图像像素、图像类标和图像路径名称:fpaths, data, label = read_img(path)
  • 将图像的顺序随机调整,并按照2-8比例划分数据集,其中80%的数据用于训练,20%的数据用于测试

#---------------------------------第一步 读取图像-----------------------------------
def read_img(path):
cate = [path + x for x in os.listdir(path) if os.path.isdir(path + x)]
imgs = []
labels = []
fpath = []
for idx, folder in enumerate(cate):
# 遍历整个目录判断每个文件是不是符合
for im in glob.glob(folder + '/*.jpg'):
#print('reading the images:%s' % (im))
img = cv2.imread(im) #调用opencv库读取像素点
img = cv2.resize(img, (32, 32)) #图像像素大小一致
imgs.append(img) #图像数据
labels.append(idx) #图像类标
fpath.append(path+im) #图像路径名
#print(path+im, idx)

return np.asarray(fpath, np.string_), np.asarray(imgs, np.float32), np.asarray(labels, np.int32)

# 读取图像
fpaths, data, label = read_img(path)
print(data.shape) # (1000, 256, 256, 3)
# 计算有多少类图片
num_classes = len(set(label))
print(num_classes)

# 生成等差数列随机调整图像顺序
num_example = data.shape[0]
arr = np.arange(num_example)
np.random.shuffle(arr)
data = data[arr]
label = label[arr]
fpaths = fpaths[arr]

# 拆分训练集和测试集 80%训练集 20%测试集
ratio = 0.8
s = np.int(num_example * ratio)
x_train = data[:s]
y_train = label[:s]
fpaths_train = fpaths[:s]
x_val = data[s:]
y_val = label[s:]
fpaths_test = fpaths[s:]
print(len(x_train),len(y_train),len(x_val),len(y_val)) #800 800 200 200
print(y_val)

3.搭建CNN

该部分具体步骤如下:

  • 首先定义Placeholder,用于传入输入值,xs表示图片32*32像素点,并且包含RGB三个图层,故大小设置为32 * 32 * 3;ys表示每张图片最终预测的类标值。
  • 调用tf.layers.conv2d()函数定义卷积层,包括20个卷积核,卷积核大小为5,激励函数为Relu;调用tf.layers.max_pooling2d()函数定义池化处理,步长为2,缩小一倍。
  • 接着定义第二个卷积层和池化层,现共有conv0, pool0和conv1, pool1。
  • 通过tf.layers.dense()函数定义全连接层,转换为长度为400的特征向量,加上DropOut防止过拟合。
  • 输出层为logits,包括10个数字,最终预测结果为predicted_labels,即为tf.arg_max(logits, 1)。
#---------------------------------第二步 建立神经网络-----------------------------------
# 定义Placeholder
xs = tf.placeholder(tf.float32, [None, 32, 32, 3]) #每张图片32*32*3个点
ys = tf.placeholder(tf.int32, [None]) #每个样本有1个输出
# 存放DropOut参数的容器
drop = tf.placeholder(tf.float32) #训练时为0.25 测试时为0

# 定义卷积层 conv0
conv0 = tf.layers.conv2d(xs, 20, 5, activation=tf.nn.relu) #20个卷积核 卷积核大小为5 Relu激活
# 定义max-pooling层 pool0
pool0 = tf.layers.max_pooling2d(conv0, [2, 2], [2, 2]) #pooling窗口为2x2 步长为2x2
print("Layer0:\n", conv0, pool0)

# 定义卷积层 conv1
conv1 = tf.layers.conv2d(pool0, 40, 4, activation=tf.nn.relu) #40个卷积核 卷积核大小为4 Relu激活
# 定义max-pooling层 pool1
pool1 = tf.layers.max_pooling2d(conv1, [2, 2], [2, 2]) #pooling窗口为2x2 步长为2x2
print("Layer1:\n", conv1, pool1)

# 将3维特征转换为1维向量
flatten = tf.layers.flatten(pool1)

# 全连接层 转换为长度为400的特征向量
fc = tf.layers.dense(flatten, 400, activation=tf.nn.relu)
print("Layer2:\n", fc)

# 加上DropOut防止过拟合
dropout_fc = tf.layers.dropout(fc, drop)

# 未激活的输出层
logits = tf.layers.dense(dropout_fc, num_classes)
print("Output:\n", logits)

# 定义输出结果
predicted_labels = tf.arg_max(logits, 1)

4.定义损失函数和优化器

利用交叉熵定义损失,同时用AdamOptimizer优化器进行深度学习,核心代码如下。

one-hot类型数据又称为一位有效编码,主要是采用N位状态寄存器来对N个状态进行编码,每个状态都由他独立的寄存器位,并且在任意时候只有一位有效。例如[0 0 0 1 0 0 0 0 0 0…] 表示为“动物”。

# 利用交叉熵定义损失
losses = tf.nn.softmax_cross_entropy_with_logits(
labels = tf.one_hot(ys, num_classes), #将input转化为one-hot类型数据输出
logits = logits)

# 平均损失
mean_loss = tf.reduce_mean(losses)

# 定义优化器 学习效率设置为0.0001
optimizer = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(losses)

5.模型训练和预测

定义标记变量train,当它为True时进行训练操作并保存训练模型;当其为False时进行预测,20%预测集进行图像分类预测实验。

#------------------------------------第四步 模型训练和预测-----------------------------------
# 用于保存和载入模型
saver = tf.train.Saver()
# 训练或预测
train = False
# 模型文件路径
model_path = "model/image_model"

with tf.Session() as sess:
if train:
print("训练模式")
# 训练初始化参数
sess.run(tf.global_variables_initializer())
# 定义输入和Label以填充容器 训练时dropout为0.25
train_feed_dict = {
xs: x_train,
ys: y_train,
drop: 0.25
}
# 训练学习1000次
for step in range(1000):
_, mean_loss_val = sess.run([optimizer, mean_loss], feed_dict=train_feed_dict)
if step % 50 == 0: #每隔50次输出一次结果
print("step = {}\t mean loss = {}".format(step, mean_loss_val))
# 保存模型
saver.save(sess, model_path)
print("训练结束,保存模型到{}".format(model_path))
else:
print("测试模式")
# 测试载入参数
saver.restore(sess, model_path)
print("从{}载入模型".format(model_path))
# label和名称的对照关系
label_name_dict = {
0: "人类",
1: "沙滩",
2: "建筑",
3: "公交",
4: "恐龙",
5: "大象",
6: "花朵",
7: "野马",
8: "雪山",
9: "美食"
}
# 定义输入和Label以填充容器 测试时dropout为0
test_feed_dict = {
xs: x_val,
ys: y_val,
drop: 0
}

# 真实label与模型预测label
predicted_labels_val = sess.run(predicted_labels, feed_dict=test_feed_dict)
for fpath, real_label, predicted_label in zip(fpaths_test, y_val, predicted_labels_val):
# 将label id转换为label名
real_label_name = label_name_dict[real_label]
predicted_label_name = label_name_dict[predicted_label]
print("{}\t{} => {}".format(fpath, real_label_name, predicted_label_name))
# 评价结果
print("正确预测个数:", sum(y_val==predicted_labels_val))
print("准确度为:", 1.0*sum(y_val==predicted_labels_val) / len(y_val))

6.完整代码及实验结果

完整代码如下所示,这里参考了王诗爷老师的部分代码,强烈推荐大家学习他的博客。地址:​​https://blog.csdn.net/wills798​

"""
Created on Sun Dec 29 19:21:08 2019
@author: xiuzhang Eastmount CSDN
"""
import os
import glob
import cv2
import numpy as np
import tensorflow as tf

# 定义图片路径
path = 'photo/'

#---------------------------------第一步 读取图像-----------------------------------
def read_img(path):
cate = [path + x for x in os.listdir(path) if os.path.isdir(path + x)]
imgs = []
labels = []
fpath = []
for idx, folder in enumerate(cate):
# 遍历整个目录判断每个文件是不是符合
for im in glob.glob(folder + '/*.jpg'):
#print('reading the images:%s' % (im))
img = cv2.imread(im) #调用opencv库读取像素点
img = cv2.resize(img, (32, 32)) #图像像素大小一致
imgs.append(img) #图像数据
labels.append(idx) #图像类标
fpath.append(path+im) #图像路径名
#print(path+im, idx)

return np.asarray(fpath, np.string_), np.asarray(imgs, np.float32), np.asarray(labels, np.int32)

# 读取图像
fpaths, data, label = read_img(path)
print(data.shape) # (1000, 256, 256, 3)
# 计算有多少类图片
num_classes = len(set(label))
print(num_classes)

# 生成等差数列随机调整图像顺序
num_example = data.shape[0]
arr = np.arange(num_example)
np.random.shuffle(arr)
data = data[arr]
label = label[arr]
fpaths = fpaths[arr]

# 拆分训练集和测试集 80%训练集 20%测试集
ratio = 0.8
s = np.int(num_example * ratio)
x_train = data[:s]
y_train = label[:s]
fpaths_train = fpaths[:s]
x_val = data[s:]
y_val = label[s:]
fpaths_test = fpaths[s:]
print(len(x_train),len(y_train),len(x_val),len(y_val)) #800 800 200 200
print(y_val)
#---------------------------------第二步 建立神经网络-----------------------------------
# 定义Placeholder
xs = tf.placeholder(tf.float32, [None, 32, 32, 3]) #每张图片32*32*3个点
ys = tf.placeholder(tf.int32, [None]) #每个样本有1个输出
# 存放DropOut参数的容器
drop = tf.placeholder(tf.float32) #训练时为0.25 测试时为0

# 定义卷积层 conv0
conv0 = tf.layers.conv2d(xs, 20, 5, activation=tf.nn.relu) #20个卷积核 卷积核大小为5 Relu激活
# 定义max-pooling层 pool0
pool0 = tf.layers.max_pooling2d(conv0, [2, 2], [2, 2]) #pooling窗口为2x2 步长为2x2
print("Layer0:\n", conv0, pool0)

# 定义卷积层 conv1
conv1 = tf.layers.conv2d(pool0, 40, 4, activation=tf.nn.relu) #40个卷积核 卷积核大小为4 Relu激活
# 定义max-pooling层 pool1
pool1 = tf.layers.max_pooling2d(conv1, [2, 2], [2, 2]) #pooling窗口为2x2 步长为2x2
print("Layer1:\n", conv1, pool1)

# 将3维特征转换为1维向量
flatten = tf.layers.flatten(pool1)

# 全连接层 转换为长度为400的特征向量
fc = tf.layers.dense(flatten, 400, activation=tf.nn.relu)
print("Layer2:\n", fc)

# 加上DropOut防止过拟合
dropout_fc = tf.layers.dropout(fc, drop)

# 未激活的输出层
logits = tf.layers.dense(dropout_fc, num_classes)
print("Output:\n", logits)

# 定义输出结果
predicted_labels = tf.arg_max(logits, 1)
#---------------------------------第三步 定义损失函数和优化器---------------------------------

# 利用交叉熵定义损失
losses = tf.nn.softmax_cross_entropy_with_logits(
labels = tf.one_hot(ys, num_classes), #将input转化为one-hot类型数据输出
logits = logits)

# 平均损失
mean_loss = tf.reduce_mean(losses)

# 定义优化器 学习效率设置为0.0001
optimizer = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(losses)
#------------------------------------第四步 模型训练和预测-----------------------------------
# 用于保存和载入模型
saver = tf.train.Saver()
# 训练或预测
train = False
# 模型文件路径
model_path = "model/image_model"

with tf.Session() as sess:
if train:
print("训练模式")
# 训练初始化参数
sess.run(tf.global_variables_initializer())
# 定义输入和Label以填充容器 训练时dropout为0.25
train_feed_dict = {
xs: x_train,
ys: y_train,
drop: 0.25
}
# 训练学习1000次
for step in range(1000):
_, mean_loss_val = sess.run([optimizer, mean_loss], feed_dict=train_feed_dict)
if step % 50 == 0: #每隔50次输出一次结果
print("step = {}\t mean loss = {}".format(step, mean_loss_val))
# 保存模型
saver.save(sess, model_path)
print("训练结束,保存模型到{}".format(model_path))
else:
print("测试模式")
# 测试载入参数
saver.restore(sess, model_path)
print("从{}载入模型".format(model_path))
# label和名称的对照关系
label_name_dict = {
0: "人类",
1: "沙滩",
2: "建筑",
3: "公交",
4: "恐龙",
5: "大象",
6: "花朵",
7: "野马",
8: "雪山",
9: "美食"
}
# 定义输入和Label以填充容器 测试时dropout为0
test_feed_dict = {
xs: x_val,
ys: y_val,
drop: 0
}

# 真实label与模型预测label
predicted_labels_val = sess.run(predicted_labels, feed_dict=test_feed_dict)
for fpath, real_label, predicted_label in zip(fpaths_test, y_val, predicted_labels_val):
# 将label id转换为label名
real_label_name = label_name_dict[real_label]
predicted_label_name = label_name_dict[predicted_label]
print("{}\t{} => {}".format(fpath, real_label_name, predicted_label_name))
# 评价结果
print("正确预测个数:", sum(y_val==predicted_labels_val))
print("准确度为:", 1.0*sum(y_val==predicted_labels_val) / len(y_val))

训练输出结果如下所示:

(1000, 32, 32, 3)
10
800 800 200 200
[2 8 6 9 9 5 2 2 9 3 7 0 6 0 0 1 3 2 7 3 4 6 9 5 8 6 4 1 1 4 4 8 6 2 6 1 2
5 0 7 9 5 2 4 6 8 7 5 8 1 6 5 1 4 8 1 9 1 8 8 6 1 0 5 3 3 1 2 9 1 8 7 6 0
8 1 8 0 2 1 3 5 3 6 9 8 7 5 2 5 2 8 8 8 4 2 2 4 3 5 3 3 9 1 1 5 2 6 7 6 7
0 7 4 1 7 2 9 4 0 3 8 7 5 3 8 1 9 3 6 8 0 0 1 7 7 9 5 4 0 3 0 4 5 7 2 2 3
0 8 2 0 2 3 5 1 7 2 1 6 5 8 1 4 6 6 8 6 5 5 1 7 2 8 7 1 3 9 7 1 3 6 0 8 7
5 8 0 1 2 7 9 6 2 4 7 7 2 8 0]

Layer0:
Tensor("conv2d_1/Relu:0", shape=(?, 28, 28, 20), dtype=float32)
Tensor("max_pooling2d_1/MaxPool:0", shape=(?, 14, 14, 20), dtype=float32)
Layer1:
Tensor("conv2d_2/Relu:0", shape=(?, 11, 11, 40), dtype=float32)
Tensor("max_pooling2d_2/MaxPool:0", shape=(?, 5, 5, 40), dtype=float32)
Layer2:
Tensor("dense_1/Relu:0", shape=(?, 400), dtype=float32)
Output:
Tensor("dense_2/BiasAdd:0", shape=(?, 10), dtype=float32)

训练模式
step = 0 mean loss = 66.93688201904297
step = 50 mean loss = 3.376957654953003
step = 100 mean loss = 0.5910811424255371
step = 150 mean loss = 0.061084795743227005
step = 200 mean loss = 0.013018212281167507
step = 250 mean loss = 0.006795921362936497
step = 300 mean loss = 0.004505819175392389
step = 350 mean loss = 0.0032660639844834805
step = 400 mean loss = 0.0024683878291398287
step = 450 mean loss = 0.0019308131886646152
step = 500 mean loss = 0.001541870180517435
step = 550 mean loss = 0.0012695763725787401
step = 600 mean loss = 0.0010685999877750874
step = 650 mean loss = 0.0009132082923315465
step = 700 mean loss = 0.0007910516578704119
step = 750 mean loss = 0.0006900889566168189
step = 800 mean loss = 0.0006068988586775959
step = 850 mean loss = 0.0005381597438827157
step = 900 mean loss = 0.0004809059901162982
step = 950 mean loss = 0.0004320790758356452
训练结束,保存模型到model/image_model

预测输出结果如下图所示,最终预测正确181张图片,准确度为0.905。相比之前机器学习KNN的0.500有非常高的提升。

测试模式
INFO:tensorflow:Restoring parameters from model/image_model
从model/image_model载入模型
b'photo/photo/3\\335.jpg' 公交 => 公交
b'photo/photo/1\\129.jpg' 沙滩 => 沙滩
b'photo/photo/7\\740.jpg' 野马 => 野马
b'photo/photo/5\\564.jpg' 大象 => 大象
...
b'photo/photo/9\\974.jpg' 美食 => 美食
b'photo/photo/2\\220.jpg' 建筑 => 公交
b'photo/photo/9\\912.jpg' 美食 => 美食
b'photo/photo/4\\459.jpg' 恐龙 => 恐龙
b'photo/photo/5\\525.jpg' 大象 => 大象
b'photo/photo/0\\44.jpg' 人类 => 人类

正确预测个数: 181
准确度为: 0.905

四.总结

写到这里,这篇文章就讲解完毕,更多TensorFlow深度学习文章会继续分享,同时实验评价、RNN、LSTM、各专业的案例都会进行深入讲解。最后,希望这篇基础性文章对您有所帮助,如果文章中存在错误或不足之处,还请海涵~作为人工智能的菜鸟,我希望自己能不断进步并深入,后续将它应用于图像识别、网络安全、对抗样本等领域,指导大家撰写简单的学术论文,一起加油!


参考文献:

[1] 冈萨雷斯著. 数字图像处理(第3版)[M]. 北京:电子工业出版社,2013.
[2]
杨秀璋, 颜娜. Python网络数据爬取及分析从入门到精通(分析篇)[M]. 北京:北京航天航空大学出版社, 2018.
[3]
罗子江等. Python中的图像处理[M]. 科学出版社,2020.
[4] 
[python数据挖掘课程] 二十.KNN最近邻分类算法分析详解及平衡秤TXT数据集读取

[5] TensorFlow【极简】CNN - Yellow_python大神

[6] 基于深度神经网络的定向激活功能开发相位信息的声源定位 - 章子雎Kevin

[7] TensorFlow实战:Chapter-5(CNN-3-经典卷积神经网络(GoogleNet)) - DFann

[8] https://github.com/siucaan/CNN_MNIST

[9] 图像处理讲解-以CNN对图像进行分类为例 - 冰机灵

[10] 基于CNN的图像缺陷分类 - BellaVita1
[12] 
tensorflow(六)训练分类自己的图片(CNN超详细入门版)- Missayaa

[13] 详解tensorflow训练自己的数据集实现CNN图像分类 - 王诗爷 (强推)

[14] https://github.com/hujunxianligong/Tensorflow-CNN-Tutorial

[15] tensorflow(三):用CNN进行图像分类 - flowrush

[16] TensorFlow图像识别(物体分类)入门教程 - cococok2
[17] 
https://github.com/calssion/Fun_AI

[18] CNN图片分类 - 火舞_流沙

[19] CNN图片单标签分类(基于TensorFlow实现基础VGG16网络)

[20] https://github.com/siucaan/CNN_MNIST/blob/master/cnn_mnist_TF.py

[21] Tensorflow实现CNN用于MNIST识别 - siucaan (强推)

[22] 使用Anaconda3安装tensorflow,opencv,使其可以在spyder中运行


点击关注,第一时间了解华为云新鲜技术~

基于tensorflow卷积神经网络(cnn)的人脸年龄和性别检测系统

文件大小:150M开发环境:Python3.7、OpenCV4.0.1.24、Tensorflow1.13.1、PyCharm2020点击下载:点击下载简要概述:基于Tensorflow卷积神经网络(CNN)的人脸年龄和性别检测系统针对年龄组和性别估计,对两个自定义CNN层进行... 查看详情

dl之lstm/gru/cnn:基于tensorflow框架分别利用lstm/grucnn算法对上海最高气温实现回归预测案例(代码片段)

DL之LSTM/GRU/CNN:基于tensorflow框架分别利用LSTM/GRU、CNN算法对上海最高气温实现回归预测案例目录基于tensorflow框架分别利用LSTM/GRU、CNN算法对上海最高气温实现回归预测案例#1、定义数据集#2、特征工程#2.1、挑选入模特征#2.2、... 查看详情

使用 OpenCV 3.4 加载 CNN tensorflow 模型时出错

】使用OpenCV3.4加载CNNtensorflow模型时出错【英文标题】:ErrorwhileloadingCNNtensorflowmodelwithOpenCV3.4【发布时间】:2019-03-1214:08:54【问题描述】:我目前正在尝试使用OpenCV加载类似tensorflow的U-net模型。该模型是使用Tensorflow1.12.0使用Python3... 查看详情

基于cnn卷积神经网络的tensorflow+keras深度学习的人脸识别(代码片段)

基于CNN卷积神经网络的TensorFlow+Keras深度学习的人脸识别前言项目实现效果补充模型数据嵌入模型CNN神经网络模型项目概述项目运行流程核心环境配置项目核心代码详解目录核心代码设置数据集目录收集人脸识别数据——UUID格... 查看详情

tensorflow实现cnn简单手写数字识别(python)(代码片段)

...行数:112行(主程序)开发环境:Python3.9、OpenCV4.5、Tensorflow2.7该源码均通过亲自测试可正常运行下载地址:点击下载简要概述:主要使用到的库:Numpy,Pygame,Tensorflow训练模型用到的是minist数据集由于时... 查看详情

mtcnn实时人脸检测网络详解与opencv+tensorflow代码演示(代码片段)

MTCNN模型概述多任务卷积神经网络(MTCNN)实现人脸检测与对齐是在一个网络里实现了人脸检测与五点标定的模型,主要是通过CNN模型级联实现了多任务学习网络。整个模型分为三个阶段,第一阶段通过一个浅层的CNN网络快速产生一... 查看详情

tensorflow实现cnn案例笔记(代码片段)

本文收集了各个资源的TensorFlow实现CNN案例,为了方便学习,如对版权有冒犯,敬请告知及时删除~目录CNN知识图谱:案例1案例2案例3案例4 Tensorflow和CNN: Tensorflow——卷积神经网络(CNN)卷积神经网络... 查看详情

基于深度学习的天气识别算法对比研究-tensorflow实现-卷积神经网络(cnn)|第1例(内附源码+数据)(代码片段)

...7;我的环境:语言环境:Python3深度学习环境:TensorFlow2🥂相关教程:编译器教程:新手入门深度学习|1-2:编译器JupyterNotebook深度学习环境配置教程:新手入门深度学习|1-1:配置深度学习环境一... 查看详情

有人开源了maskr-cnn对象检测和分割的keras和tensorflow代码

...github上发布了何凯明的MaskR-CNN目标检测和对象分割Keras和TensorFlow的实现代码。这个实现基于Python3、Keras和TensorFlow。模型对图片中的每个对象实例生成包围框(boundingboxes)和分割掩膜(segmentationmasks)。基于特征金... 查看详情

字符型图片验证码,使用tensorflow实现卷积神经网络,进行验证码识别cnn

本项目使用卷积神经网络识别字符型图片验证码,其基于TensorFlow框架。它封装了非常通用的校验、训练、验证、识别和调用API,极大地减低了识别字符型验证码花费的时间和精力。 项目地址:https://github.com/nickliqian/cnn_captcha... 查看详情

tensorflow实战-tensorflow实现卷积神经网络cnn-第5章

第5章-TensorFlow实现卷积神经网络CNN5.1卷积神经网络简介卷积神经网络CNN最初是为了解决图像识别等问题设计的,当然现在的应用已经不限于图像和视频,也可以用于时间序列信号,比如音频信号、文本数据等。在深度学习出现之... 查看详情

android+tensorflow+cnn+mnist手写数字识别实现

SyncHere  查看详情

android+tensorflow+cnn+mnist手写数字识别实现

SyncHere  查看详情

opencv+openvino实现人脸landmarks实时检测(代码片段)

...习人脸检测,OpenCV本身提供了两个模型分别是基于Caffe与Tensorflow的,Caffe版本的模型是半精度16位的,tensorflow版本的模型是8位量化的。同时OpenCV通过与OpenVINOIE模型集成实现了底层硬件对对象检测、图像分割、图像分类等常见模... 查看详情

tensorflow实现cnn中的维度问题

使用TensorFlow实现cnn,其中tf.nn.conv2d(input_tensor…)input_tensor的格式要求是[batch,in_height,in_width,in_channels]但是python中四维矩阵是[batch,in_channels,in_height,in_width]使用transpose即可 查看详情

tensorflow实现cnn中的维度问题

使用TensorFlow实现cnn,其中tf.nn.conv2d(input_tensor…)input_tensor的格式要求是[batch,in_height,in_width,in_channels]但是python中四维矩阵是[batch,in_channels,in_height,in_width]使用transpose即可 查看详情

使用 Tensorflow 2.0 实现 CNN 模型

】使用Tensorflow2.0实现CNN模型【英文标题】:implementaCNNmodelusingTensorlow2.0【发布时间】:2020-03-1417:54:13【问题描述】:由于我是这个领域的新手,我在项目中面临很多错误。请帮我解决这些问题。提前致谢请下载下面的文件并在jup... 查看详情

tensorflow实现的一个最基本cnn

原理可以参考https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/以及《神经网络与深度学习》上代码:importtensorflowastffromtqdmimporttqdm_notebookfromtensorflow.examples.tutorials.mnistimportinput_data"""thecnnwe 查看详情