深度学习简介——卷积神经网络

Tina Tina     2022-09-24     804

关键词:

 

 

 

深度学习简介

深度学习是指多层神经网络上运用各种机器学习算法解决图像,文本等各种问题的算法集合。深度学习从大类上可以归入神经网络,不过在具体实现上有许多变化。深度学习的核心是特征学习,旨在通过分层网络获取分层次的特征信息,从而解决以往需要人工设计特征的重要难题。深度学习是一个框架,包含多个重要算法: 

  • Convolutional Neural Networks(CNN)卷积神经网络
  • AutoEncoder自动编码器
  • Sparse Coding稀疏编码
  • Restricted Boltzmann Machine(RBM)限制波尔兹曼机
  • Deep Belief Networks(DBN)深信度网络
  • Recurrent neural Network(RNN)多层反馈循环神经网络神经网络

对于不同问题(图像,语音,文本),需要选用不同网络模型才能达到更好效果。

此外,最近几年增强学习(Reinforcement Learning)与深度学习的结合也创造了许多了不起的成果,AlphaGo就是其中之一。

 

人类视觉原理

深度学习的许多研究成果,离不开对大脑认知原理的研究,尤其是视觉原理的研究。

1981 年的诺贝尔医学奖,颁发给了 David Hubel(出生于加拿大的美国神经生物学家) 和TorstenWiesel,以及 Roger Sperry。前两位的主要贡献,是“发现了视觉系统的信息处理”,可视皮层是分级的。

人类的视觉原理如下:从原始信号摄入开始(瞳孔摄入像素 Pixels),接着做初步处理(大脑皮层某些细胞发现边缘和方向),然后抽象(大脑判定,眼前的物体的形状,是圆形的),然后进一步抽象(大脑进一步判定该物体是只气球)。下面是人脑进行人脸识别的一个示例:

 

对于不同的物体,人类视觉也是通过这样逐层分级,来进行认知的:

我们可以看到,在最底层特征基本上是类似的,就是各种边缘,越往上,越能提取出此类物体的一些特征(轮子、眼睛、躯干等),到最上层,不同的高级特征最终组合成相应的图像,从而能够让人类准确的区分不同的物体。

 

那么我们可以很自然的想到:可以不可以模仿人类大脑的这个特点,构造多层的神经网络,较低层的识别初级的图像特征,若干底层特征组成更上一层特征,最终通过多个层级的组合,最终在顶层做出分类呢?答案是肯定的,这也是许多深度学习算法(包括CNN)的灵感来源。

 

卷积网络介绍

卷积神经网络是一种多层神经网络,擅长处理图像特别是大图像的相关机器学习问题。

卷积网络通过一系列方法,成功将数据量庞大的图像识别问题不断降维,最终使其能够被训练。CNN最早由Yann LeCun提出并应用在手写字体识别上(MINST)。LeCun提出的网络称为LeNet,其网络结构如下:

这是一个最典型的卷积网络,由卷积层、池化层、全连接层组成。其中卷积层与池化层配合,组成多个卷积组,逐层提取特征,最终通过若干个全连接层完成分类。

卷积层完成的操作,可以认为是受局部感受野概念的启发,而池化层,主要是为了降低数据维度。

综合起来说,CNN通过卷积来模拟特征区分,并且通过卷积的权值共享及池化,来降低网络参数的数量级,最后通过传统神经网络完成分类等任务。

降低参数量级

为什么要降低参数量级?从下面的例子就可以很容易理解了。

如果我们使用传统神经网络方式,对一张图片进行分类,那么,我们把图片的每个像素都连接到隐藏层节点上,那么对于一张1000x1000像素的图片,如果我们有1M隐藏层单元,那么一共有10^12个参数,这显然是不能接受的。(如下图所示)

 

 

但是我们在CNN里,可以大大减少参数个数,我们基于以下两个假设:

1)最底层特征都是局部性的,也就是说,我们用10x10这样大小的过滤器就能表示边缘等底层特征

2)图像上不同小片段,以及不同图像上的小片段的特征是类似的,也就是说,我们能用同样的一组分类器来描述各种各样不同的图像

基于以上两个,假设,我们就能把第一层网络结构简化如下:

我们用100个10x10的小过滤器,就能够描述整幅图片上的底层特征。

 

卷积(Convolution)

卷积运算的定义如下图所示:

 

 

 

如图所示,我们有一个5x5的图像,我们用一个3x3的卷积核:

1  0  1

0  1  0

1  0  1

来对图像进行卷积操作(可以理解为有一个滑动窗口,把卷积核与对应的图像像素做乘积然后求和),得到了3x3的卷积结果。

这个过程我们可以理解为我们使用一个过滤器(卷积核)来过滤图像的各个小区域,从而得到这些小区域的特征值。

在实际训练过程中,卷积核的值是在学习过程中学到的。

在具体应用中,往往有多个卷积核,可以认为,每个卷积核代表了一种图像模式,如果某个图像块与此卷积核卷积出的值大,则认为此图像块十分接近于此卷积核。如果我们设计了6个卷积核,可以理解:我们认为这个图像上有6种底层纹理模式,也就是我们用6中基础模式就能描绘出一副图像。以下就是24种不同的卷积核的示例:

 

池化(Pooling)

池化听起来很高深,其实简单的说就是下采样。池化的过程如下图所示:

上图中,我们可以看到,原始图片是20x20的,我们对其进行下采样,采样窗口为10x10,最终将其下采样成为一个2x2大小的特征图。

之所以这么做的原因,是因为即使做完了卷积,图像仍然很大(因为卷积核比较小),所以为了降低数据维度,就进行下采样。

之所以能这么做,是因为即使减少了许多数据,特征的统计属性仍能够描述图像,而且由于降低了数据维度,有效地避免了过拟合。

在实际应用中,池化根据下采样的方法,分为最大值下采样(Max-Pooling)与平均值下采样(Mean-Pooling)。

 

LeNet介绍

下面再回到LeNet网络结构:

这回我们就比较好理解了,原始图像进来以后,先进入一个卷积层C1,由6个5x5的卷积核组成,卷积出28x28的图像,然后下采样到14x14(S2)。

接下来,再进一个卷积层C3,由16个5x5的卷积核组成,之后再下采样到5x5(S4)。

注意,这里S2与C3的连接方式并不是全连接,而是部分连接,如下图所示:

其中行代表S2层的某个节点,列代表C3层的某个节点。

我们可以看出,C3-0跟S2-0,1,2连接,C3-1跟S2-1,2,3连接,后面依次类推,仔细观察可以发现,其实就是排列组合:

 

0 0 0 1 1 1

0 0 1 1 1 0

0 1 1 1 0 0

...

1 1 1 1 1 1

 

我们可以领悟作者的意图,即用不同特征的底层组合,可以得到进一步的高级特征,例如:/ + \ = ^ (比较抽象O(∩_∩)O~),再比如好多个斜线段连成一个圆等等。

最后,通过全连接层C5、F6得到10个输出,对应10个数字的概率。

 

最后说一点个人的想法哈,我认为第一个卷积层选6个卷积核是有原因的,大概也许可能是因为0~9其实能用以下6个边缘来代表:

是不是有点道理呢,哈哈

然后C3层的数量选择上面也说了,是从选3个开始的排列组合,所以也是可以理解的。

其实这些都是针对特定问题的trick,现在更加通用的网络的结构都会复杂得多,至于这些网络的参数如何选择,那就需要我们好好学习了。

 

训练过程

卷积神经网络的训练过程与传统神经网络类似,也是参照了反向传播算法。

第一阶段,向前传播阶段:

a)从样本集中取一个样本(X,Yp),将X输入网络;

b)计算相应的实际输出Op

      在此阶段,信息从输入层经过逐级的变换,传送到输出层。这个过程也是网络在完成训练后正常运行时执行的过程。在此过程中,网络执行的是计算(实际上就是输入与每层的权值矩阵相点乘,得到最后的输出结果):

          Op=Fn(…(F2(F1(XpW(1))W(2))…)W(n)

第二阶段,向后传播阶段

a)算实际输出Op与相应的理想输出Yp的差;

b)按极小化误差的方法反向传播调整权矩阵。

以上内容摘自其他博客,由于我也没有仔细了解这一块,建议直接参考原博客

 

参考资料

Deep Learning(深度学习)学习笔记整理系列之(七) 

Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现

卷积神经网络(一):LeNet5的基本结构

UFLDL Tutorial 

 

(转载时请注明本文地址链接:http://www.cnblogs.com/alexcai/p/5506806.html

深度学习卷积神经网络(cnn)简介(入门级好文)

卷积神经网络CNN简介学习目标1.更复杂抽象的数据2.激活函数的选择2.1为什么需要非线性的激活函数2.2更多发展3.为什么需要卷积神经网络3.1感受野4.边缘检测学习目标目标了解线性网络以及多层网络模型缺陷知道为什么需要非线... 查看详情

深度学习笔记第6课:卷积神经网络简介

到目前为止,我们已经大致地介绍了一些新网络但是,如果你对数据已有一些了解,比如它是一张图片,或者一系列事物,你可以做得更好颜色想法非常简单,如果你的数据是某种结构,则你的网络没有必要从零开始学习结构,... 查看详情

《python深度学习》第五章-1(cnn简介)读书笔记(代码片段)

第五章深度学习用于计算机视觉5.1 卷积神经网络简介5.1.1卷积神经网络对MNIST分类使用卷积神经网络对MNIST数字进行分类,在第2章用密集连接网络做过(当时的测试精度为97.8%)。它是Conv2D层和MaxPooling2D层的堆叠。实... 查看详情

深度学习-alexnet(第一个深度卷积网络)(代码片段)

...分享一下给大家。点击跳转到网站。简介AlexNet是第一个深度卷积网络模型,赢得了2012年ImageNet图像分类竞赛的冠军,自98年的LeNet后再次将深度学习研究引热,创造性的提出了很多方法且影响至今& 查看详情

sigai深度学习第七集卷积神经网络1

讲授卷积神经网络核心思想、卷积层、池化层、全连接层、网络的训练、反向传播算法、随机梯度下降法、AdaGrad算法、RMSProp算法、AdaDelta算法、Adam算法、迁移学习和finetune等。大纲:卷积神经网络简介视觉神经网络的核心思想... 查看详情

深度学习-lenet(第一个卷积神经网络)(代码片段)

...件编码上的手写数字的识别,也被认为是最早的卷积神经网络(CNN),为后续CNN的发展奠定了基础࿰ 查看详情

深度学习-lenet(第一个卷积神经网络)(代码片段)

...件编码上的手写数字的识别,也被认为是最早的卷积神经网络(CNN),为后续CNN的发展奠定了基础࿰ 查看详情

[人工智能-深度学习-24]:卷积神经网络cnn-cs231n解读-卷积神经网络基本层级

..._CSDN博客本文网址:[人工智能-深度学习-23]:卷积神经网络CNN-CS231n解读-卷积神经网络基本层级_文火冰糖(王文兵)的博客-CSDN博客 目录第1章CS321n卷积神经网络简介1.1 CS321n的简介1.2  查看详情

什么是深度学习?kears简介,深度学习常用的三大模型,mlp(多层感知机),cnn(卷积神经网络),rnn(循环神经网络)

什么是深度学习?简单理解深度学习就是人类容易做的事情,机器不容易完成的事情。(实例:人脸识别,这个例子很好的证明了这句话。假如你识别一个人,今天这个人长这个样子,明天脸上有一块... 查看详情

sigai深度学习第十集卷积神经网络4

...)、图像分割(确定每个像素它属于哪一个目标)。卷积神经网络应用简介先简单介绍一下CNN的应用情况。它最早是应用在机器视觉/图像领域里边的,更具体来说 查看详情

14深度学习-卷积

...:是一种实现机器学习的技术,适合处理大数据2.全连接神经网络与卷积神经网络的联系与区别。联系:  全连接神经网络与卷积神经网络都是通过一层 查看详情

14深度学习-卷积

...他们的关系不是互相独立,而是一环套着一环。2.全连接神经网络与卷积神经网络的联系与区别。答:卷积神经网络的输入输出以及训练的流程和全连接神经网络也基本一致。全连接神经网络和卷积神经网络的唯一区别 查看详情

14深度学习-卷积(代码片段)

...一种实现机器学习的技术和学习方法。 2. 全连接神经网络与卷积神经网络的联系与区别。解析:卷积神经网络也是通过一层一层的节点组织起来的。和全连接神经网络一样,卷积神经网络中的每一个节 查看详情

14深度学习-卷积(代码片段)

...实现机器学习的技术;它适合处理大数据。 2.全连接神经网络与卷积神经网络的联系与区别。联系:  全连接神经网络与卷积神经网络都是通过一层一层的节点组织起来的,和全连接神经网 查看详情

深度学习卷积神经网络(cnn)原理

【深度学习】卷积神经网络原理1.卷积神经网络的组成2.卷积层2.1卷积运算过程3.padding-零填充3.1ValidandSame卷积3.2奇数维度的过滤器4.stride-步长5.多通道卷积5.1多卷积核(多个Filter)6.卷积总结7.池化层(Pooling)8.全连接层9.总... 查看详情

深度学习

深度学习是  多层神经网络上运用各种机器学习算法  解决图像,文本等各种问题的算法集合 深度学习算法:convolutionalNeuralNetworks(CNN)卷积神经网络  卷积网络:由卷积层、池化层、全连接层组成。    其中卷积... 查看详情

搞定《动手学深度学习》-(李牧)pytorch版本的所有内容

...学习简介2.预备知识3.深度学习基础4.深度学习计算5.卷积神经网络6.循环神经网络7.优化算法8.计算性能9.计算机视觉10.自然语言处理环境参考(大家可以在这里下载代码)原书地址(大家可以在这里阅读电子版PDF内容&#... 查看详情

深度学习-alexnet(第一个深度卷积网络)(代码片段)

...分享一下给大家。点击跳转到网站。简介AlexNet是第一个深度卷积网络模型,赢得了2012年ImageNet图像分类竞赛的冠军,自98年的LeNet后再次将深度学习研究引热,创造性的提出了很多方法且影响至今,如使用GPU进行... 查看详情