逻辑回归算法的原理及实现(lr)

Little_Rookie Little_Rookie     2022-08-15     204

关键词:

Logistic回归虽然名字叫”回归” ,但却是一种分类学习方法。使用场景大概有两个:第一用来预测,第二寻找因变量的影响因素。逻辑回归(Logistic Regression, LR)又称为逻辑回归分析,是分类和预测算法中的一种。通过历史数据的表现对未来结果发生的概率进行预测。例如,我们可以将购买的概率设置为因变量,将用户的特征属性,例如性别,年龄,注册时间等设置为自变量。根据特征属性预测购买的概率。逻辑回归与回归分析有很多相似之处,在开始介绍逻辑回归之前我们先来看下回归分析。

回归分析用来描述自变量x和因变量Y之间的关系,或者说自变量X对因变量Y的影响程度,并对因变量Y进行预测。其中因变量是我们希望获得的结果,自变量是影响结果的潜在因素,自变量可以有一个,也可以有多个。一个自变量的叫做一元回归分析,超过一个自变量的叫做多元回归分析。

下面是一组广告费用和曝光次数的数据,费用和曝光次数一一对应。其中曝光次数是我们希望知道的结果,费用是影响曝光次数的因素,我们将费用设置为自变量X,将曝光次数设置为因变量Y,通过一元线性回归方程和判定系数可以发现费用(X)对曝光次数(Y)的影响。

技术分享

以下为一元回归线性方式,其中y是因变量,X是自变量,我们只需求出截距b0和斜率b1就可以获得费用和曝光次数之间的关系,并对曝光次数进行预测。这里我们使用最小二乘法来计算截距b0和斜率b1。最小二乘法通过最小化误差的平方寻找数据的最佳函数匹配。

技术分享

下表中是使用最小二乘法计算回归方程的一些必要的计算过程。在表中最左侧的两列分别为自变量X和因变量Y,我们首先计算出自变量和因变量的均值,然后计算每一个观测值与均值的差,以及用于计算回归方程斜率b1所需的数据。

技术分享

根据表中的数据按公式计算出了回归方程的斜率b1,计算过程如下。斜率表示了自变量和因变量间的关系,斜率为正表示自变量和因变量正相关,斜率为负表示自变量和因变量负相关,斜率为0表示自变量和因变量不相关。

技术分享

求得斜率b1后,按下面的公式可以求出Y轴的截距b0。

技术分享

将斜率b1和截距b0代入到回归方程中,通过这个方程我们可以获得自变量和因变量的关系,费用每增加1元,曝光次数会增长7437次。以下为回归方程和图示。

技术分享

 

技术分享

在回归方程的图示中,还有一个R^2,这个值叫做判定系数,用来衡量回归方程是否很好的拟合了样本的数据。判定系数在0-1之间,值越大说明拟合的越好,换句话说就是自变量对因变量的解释度越高。判定系数的计算公式为SST=SSR+SSE,其中SST是总平方和,SSR是回归平方和,SSE是误差平方和。下表为计算判定系数所需三个指标的一些必要的计算过程。

技术分享

根据前面求得的回归平方和(SSR)和总平方和(SST)求得判定系数为0.94344。

技术分享

以上为回归方程的计算过程,在根据费用预测曝光数量的场景下,我们可以通过回归方程在已知费用的情况下计算出曝光数量。逻辑回归与回归方程相比在线性回归的基础上增加了一个逻辑函数。例如通过用户的属性和特征来判断用户最终是否会进行购买。其中购买的概率是因变量Y,用户的属性和特征是自变量X。Y值越大说明用户购买的概率越大。这里我们使用事件发生的可能性(odds)来表示购买与未购买的比值。

技术分享

使用E作为购买事件,P(E)是购买的概率,P(E’)是未购买的概率,Odds(E)是事件E(购买)发生的可能性。

技术分享

Odds是一个从0到无穷的数字,Odds的值越大,表明事件发生的可能性越大。下面我们要将Odds转化为0-1之间的概率函数。首先对Odds取自然对数,得到logit方程,logit是一个范围在负无穷到正无穷的值。

技术分享

基于上面的logit方程,获得以下公式:

技术分享

其中使用π替换了公式中的P(E),π=P(E)。根据指数函数和对数规则获得以下公式:

技术分享

并最终获得逻辑回归方程:

技术分享

下面根据逻辑回归方程来计算用户购买的概率,下表是用户注册天数和是否购买的数据,其中注册天数是自变量X,是否购买是自变量Y。我们将购买标记为1,将未购买标记为0。

接下来我们将在Excel中通过8个步骤计算出逻辑回归方程的斜率和截距。并通过方程预测新用户是否会购买。

技术分享

  • 第一步,使用Excel的排序功能对原始数据按因变量Y进行排序,将已购买和未购买的数据分开,使得数据特征更加明显。
  • 第二步,按照Logit方程预设斜率b1和截距b0的值,这里我们将两个值都预设为0.1。后续再通过Excel求最优解
  • 第三步,按照logit方程,使用之前预设的斜率和截距值计算出L值

技术分享

  • 第四步,将L值取自然对数
  • 第五步,计算P(X)的值,P(X)为事件发生的可能性(Odds)。
  • 具体的计算步骤和过程见下图。

技术分享

  • 第六步,计算每个值的对数似然函数估计值(Log-Likelihood)。方法和过程见下图。
  • 第七步,将对数似然函数值进行汇总

技术分享

  • 第八步,使用Excel的规划求解功能,计算最大对数似然函数值。方法和过程见下图。设置汇总的对数似然函数值LL为最大化的目标,预设的斜率b1和截距b0是可变单元格,取消”使无约束变量为非负数”的选项。进行求解。

技术分享

Excel将自动求出逻辑回归方程中斜率和截距的最优解,结果如下图所示。

技术分享

求得逻辑回归方程的斜率和截距以后,我们可以将值代入方程,获得一个注册天数与购买概率的预测模型,通过这个模型我们可以对不同注册天数(X)用户的购买概率(Y)进行预测。以下为计算过程。

技术分享

  • 第一步,输入自变量注册天数(X)的值,这里我们输入50天。
  • 第二步,将输入的X值,以及斜率和截距套入Logit方程,求出L值。
  • 第三步,对L值取自然对数。
  • 第四步,求时间发生可能性P(X)的概率值。

注册天数为50天的用户购买的概率约为17.60%。

我们将所有注册天数的值代入到购买概率预测模型中,获得了一条注册天数对购买概率影响的曲线。从曲线中可以发现,注册天数在较低和较高天数的用户购买概率较为平稳。中间天数用户的购买概率变化较大。

技术分享

我们继续在上面的计算结果中增加新的自变量“年龄”。以下是原始数据的截图。现在有年龄和注册天数两个自变量和一个因变量。

技术分享

依照前面的方法计算斜率和截距的最优解,并获得逻辑回归方程,将不同的年龄和注册天数代入到方程中,获得了用户年龄和注册天数对购买的预测模型。我们通过Excel的三维图表来绘制年龄和注册天数对购买概率的影响。

技术分享

从图中可以看出,购买概率随着注册天数的增加而增长,并且在相同的注册天数下,年龄较小的用户购买概率相对较高。

转载于: http://bluewhale.cc/2016-05-18/logistic-regression.html#ixzz4RbUh8R3T

一 从线性回归到Logistic回归

线性回归和Logistic回归都是广义线性模型的特例。

假设有一个因变量y和一组自变量x1, x2, x3, ... , xn,其中y为连续变量,我们可以拟合一个线性方程:

y =β1*x2*x3*x+...+βn*xn

并通过最小二乘法估计各个β系数的值。

如果y为二分类变量,只能取值0或1,那么线性回归方程就会遇到困难: 方程右侧是一个连续的值,取值为负无穷到正无穷,而左侧只能取值[0,1],无法对应。为了继续使用线性回归的思想,统计学家想到了一个变换方法,就是将方程右边的取值变换为[0,1]。最后选中了Logistic函数:

y = 1 / (1+e-x)

这是一个S型函数,值域为(0,1),能将任何数值映射到(0,1),且具有无限阶可导等优良数学性质。

我们将线性回归方程改写为:

y = 1 / (1+e-z),

其中,z =β1*x2*x3*x+...+βn*xn

此时方程两边的取值都在0和1之间。

进一步数学变换,可以写为:

Ln(y/(1-y)) =β1*x2*x3*x+...+βn*xn

Ln(y/(1-y))称为Logit变换。我们再将y视为y取值为1的概率p(y=1),因此,1-y就是y取值为0的概率p(y=0),所以上式改写为:

p(y=1) = ez/(1+ez),

p(y=0) = 1/(1+ez),

其中,z =β1*x2*x3*x+...+βn*xn.

接下来就可以使用”最大似然法”估计出各个系数β。

 

二 odds与OR复习

      odds: 称为几率、比值、比数,是指某事件发生的可能性(概率)与不发生的可能性(概率)之比。用p表示事件发生的概率,则:odds = p/(1-p)。

      OR:比值比,为实验组的事件发生几率(odds1)/对照组的事件发生几率(odds2)。 

 

三 Logistic回归结果的解读

      我们用一个例子来说明,这个例子中包含200名学生数据,包括1个自变量和4个自变量:

      因变量:  hon,表示学生是否在荣誉班(honors class),1表示是,0表示否;

      自变量:

      female :性别,分类变量,1=女,0=男

      read: 阅读成绩,为连续变量

      write: 写作成绩,为连续变量

      math:数学成绩,为连续变量 

 

      1、不包含任何变量的Logistic回归

      首先拟合一个不包含任何变量的Logistic回归,

      模型为 ln(p/(1-p) =β0

      回归结果如下(结果经过编辑):

hon

系数β

标准误

P

截距

-1.12546

0.164

0.000

      这里的系数β就是模型中的β= -1.12546,

      我们用p表示学生在荣誉班的概率,所以有ln(p/(1-p) =β= -1.12546,

      解方程得:p = 0.245。

      odds = p/1-p = 0.3245

      这里的p是什么意思呢?p就是所有数据中hon=1的概率。

      我们来统计一下整个hon的数据:

hon

例数

百分比

0

151

75.5%

1

49

24.5%

      hon取值为1的概率p为49/(151+49) = 24.5% = 0.245,我们可以手动计算出ln(p/(1-p) = -1.12546,等于系数β0。可以得出关系:

      β0=ln(odds)。

 

      2、包含一个二分类因变量的模型

      拟合一个包含二分类因变量female的Logistic回归,

      模型为 ln(p/(1-p)  =β1* female.

      回归结果如下(结果经过编辑):

hon

系数β

标准误

P

female

0.593

.3414294

0.083

截距

-1.47

.2689555

0.000

      在解读这个结果之前,先看一下hon和female的交叉表:

hon

female

Total

Male

Female

0

74

77

151

1

17

32

49

Total

91

109

 

根据这个交叉表,对于男性(Male),其处在荣誉班级的概率为17/91,处在非荣誉班级的概率为74/91,所以其处在荣誉班级的几率odds1=(17/91)/(74/91) = 17/74 = 0.23;相应的,女性处于荣誉班级的几率odds2 = (32/109)/(77/109)=32/77 = 0.42。女性对男性的几率之比OR = odds2/odds1 = 0.42/0.23 = 1.809。我们可以说,女性比男性在荣誉班的几率高80.9%。

回到Logistic回归结果。截距的系数-1.47是男性odds的对数(因为男性用female=0表示,是对照组),ln(0.23) = -1.47。变量female的系数为0.593,是女性对男性的OR值的对数,ln(1.809) = 0.593。所以我们可以得出关系: OR = exp(β),或者β= ln(OR)(exp(x)函数为指数函数,代表e的x次方)。

 

      3、包含一个连续变量的模型

      拟合一个包含连续变量math的Logistic回归,

      模型为 ln(p/(1-p)  =β1* math.

      回归结果如下(结果经过编辑):

hon

系数β

标准误

P

math

.1563404

.0256095

0.000

截距

-9.793942

1.481745

0.000

      这里截距系数的含义是在荣誉班中math成绩为0的odds的对数。我们计算出odds = exp(-9.793942) = .00005579,是非常小的。因为在我们的数据中,没有math成绩为0的学生,所以这是一个外推出来的假想值。

      怎么解释math的系数呢?根据拟合的模型,有:

      ln(p/(1-p)) =  - 9.793942  + .1563404*math

      我们先假设math=54,有:

      ln(p/(1-p))(math=54) = - 9.793942 + .1563404 *54

      然后我们把math提高提高一个单位,令math=55,有:

      ln(p/(1-p))(math=55) = - 9.793942 + .1563404 *55

      两者之差:

      ln(p/(1-p))(math=55) - ln(p/1-p))(math = 54) = 0.1563404.

      正好是变量math的系数。

      由此我们可以说,math每提高1个单位,odds(即p/(1-p),也即处于荣誉班的几率)的对数增加0.1563404。

      那么odds增加多少呢?根据对数公式:

      ln(p/(1-p))(math=55) - ln(p/1-p))(math = 54) = ln((p/(1-p)(math=55)/ (p/(1-p)(math=54))) = ln(odds(math=55)/ odds(math=54)) = 0.1563404.

      所以:

      odds(math=55)/ odds(math=54)  =  exp(0.1563404) = 1.169.

      因此我们可以说,math每升高一个单位,odds增加16.9%。且与math的所处的绝对值无关。

      聪明的读者肯定发现,odds(math=55)/ odds(math=54)不就是OR嘛!

 

      4、包含多个变量的模型(无交互效应)

      拟合一个包含female、math、read的Logistic回归,

      模型为 ln(p/(1-p) = β1* math+β2* female+β3* read.

      回归结果如下(结果经过编辑):

hon

系数β

标准误

P

math

.1229589

0.000

female

0.979948

0.020

read

.0590632

0.026

截距

-11.77025

0.000

      该结果说明:

     (1) 性别:在math和read成绩都相同的条件下,女性(female=1)进入荣誉班的几率(odds)是男性(female=0)的exp(0.979948) = 2.66倍,或者说,女性的几率比男性高166%。

     (2) math成绩:在female和read都相同的条件下,math成绩每提高1,进入荣誉班的几率提高13%(因为exp(0.1229589) = 1.13)。

     (3)read的解读类似math。

 

      5、包含交互相应的模型

      拟合一个包含female、math和两者交互相应的Logistic回归,

      模型为 ln(p/(1-p)  =β1* female+β2* math+β3* female *math.

      所谓交互效应,是指一个变量对结果的影响因另一个变量取值的不同而不同。

      回归结果如下(结果经过编辑):

hon

系数β

标准误

P

female

-2.899863

0.349

math

.1293781

0.000

female*math

.0669951

0.210

截距

-8.745841

0.000

      注意:female*math项的P为0.21,可以认为没有交互相应。但这里我们为了讲解交互效应,暂时忽略P值,姑且认为他们是存在交互效应的。

      由于交互效应的存在,我们就不能说在保持math和female*math不变的情况下,female的影响如何如何,因为math和female*math是不可能保持不变的!

      对于这种简单的情况,我们可以分别拟合两个方程,

      对于男性(female=0):

      log(p/(1-p))= β0 + β2*math.

      对于女性(female=1):

      log(p/(1-p))= (β0 + β1) + (β2 + β3 )*math.

      然后分别解释。

 



lr(逻辑回归)算法实现(代码片段)

现在做的不是做预测某个人未来信用卡支出多少钱这类的预测工作,而是通过对过去的数据去分析哪些因素是信用卡支出的显著影响因素fromIPython.core.interactiveshellimportInteractiveShellInteractiveShell.ast_node_interactivity="all"imp... 查看详情

lr(逻辑回归)算法实现(代码片段)

现在做的不是做预测某个人未来信用卡支出多少钱这类的预测工作,而是通过对过去的数据去分析哪些因素是信用卡支出的显著影响因素fromIPython.core.interactiveshellimportInteractiveShellInteractiveShell.ast_node_interactivity="all"imp... 查看详情

逻辑回归lr

逻辑回归算法相信很多人都很熟悉,也算是我比较熟悉的算法之一了,毕业论文当时的项目就是用的这个算法。这个算法可能不想随机森林、SVM、神经网络、GBDT等分类算法那么复杂那么高深的样子,可是绝对不能小看这个算法... 查看详情

logistic回归分类算法原理分析与代码实现

小结      1.逻辑回归的计算代价不高,是很常用的分类算法。集中基于随机梯度上升的逻辑回归分类器能够支持在线学习。      2.但逻辑回归算法缺点很明显-一般只能解决两个类的分... 查看详情

tensorflow逻辑回归原理与实现(超详细)

逻辑回归原理与实现学习目标1.神经网络基础1.1Logistic回归1.2逻辑回归损失函数2.梯度下降算法3.导数3.1导数3.2导数计算图3.3链式法则3.4逻辑回归的梯度下降4.向量化编程4.1向量化优势4.2向量化实现伪代码5.案例:实现逻辑回归5... 查看详情

机器学习逻辑回归lr的推导及特性是什么,面试回答?

...从这个分布,然后使用极大似然估计做参数的估计。逻辑回归=线性回归+sigmoid函数即 查看详情

lr-逻辑回归

因为逻辑回归对于计算广告学非常重要。也是我们平时广告推荐、CTR预估最常用到的算法。所以单独开一篇文章讨论。 参考这篇文章:http://www.cnblogs.com/sparkwen/p/3441197.html 逻辑回归其实仅为在线性回归的基础上,套用了... 查看详情

逻辑回归理解及代码实现

github:代码实现之逻辑回归本文算法均使用python3实现1.什么是逻辑回归??《机器学习实战》一书中提到:利用逻辑回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,以此进行分类(主要用于解决二分类问题... 查看详情

逻辑回归算法-通俗易懂易实现

转自https://www.cnblogs.com/hum0ro/p/9652674.html,看到介绍的逻辑回归很容易理解算法原理及实现,拿来存档做记录一直做图像处理算法和视频方面的嵌入式应用软件,早起研究和应用过神经网络算法,一直没有了解其他分类的机器学习... 查看详情

机器学习--逻辑回归的原理与基础实现(代码片段)

文章目录概述一、逻辑回归二、小案例总结概述逻辑回归(LogisticRegression,简称LR),其实是一个很有误导性的概念,虽然它的名字中带有“回归”两个字,但是它最擅长处理的却是分类问题。LR分类器适用于各项广义上... 查看详情

破解数据匮乏现状:纵向联邦学习场景下的逻辑回归(lr)

...华为云可信智能计算服务(TICS)采用的纵向联邦逻辑回归(LR)方案。本文分享自华为云社区《纵向联邦学习场景下的逻辑回归(LR)》,作者:汽水要加冰。海量训练数据是人工智能技术在各个领... 查看详情

lr(逻辑回归)

...函数,即:h(x)=w0+w1x1+w2x2+...+wnxn写成向量形式为:h(x)=wTx逻辑回归是一种分类算法,本质上是线性回归,它通过引入对数几率函数将线性回归得到的连续值映射到0~1之间,从而可以用在分类问题上逻辑回归的预测函数为:对于任... 查看详情

机器学习—逻辑回归与svm区别

...VM有什么不同点  (1)本质上是其lossfunction不同;  逻辑回归损失函数:    SVM损失函数:    LR方法基于概率理论,假设样本为0或者1的概率可以用sigmoid函数来表示,然后 查看详情

机器学习实战之logistic回归

...ssion    1.1线性回归    1.2Sigmoid函数    1.3逻辑回归    1.4LR与线性回归的区别  2.LR的损失函数  3.LR正则化    3.1L1正则化    3.2L2正则化    3.3L1正则化和L2正则化的区别  4.RL损失函数求... 查看详情

逻辑回归原理小结

    逻辑回归是一个分类算法,它可以处理二元分类以及多元分类。虽然它名字里面有“回归”两个字,却不是一个回归算法。那为什么有“回归”这个误导性的词呢?个人认为,虽然逻辑回归是分类模型,但是它的原理里... 查看详情

机器学习算法---逻辑回归及梯度下降

一、逻辑回归简介  logistic回归又称logistic回归分析,是一种广义的线性回归分析模型,常用于数据挖掘,疾病自动诊断,经济预测等领域。  logistic回归是一种广义线性回归(generalizedlinearmodel),因此与多重线性回归分析... 查看详情

逻辑回归原理小结

逻辑回归是一个分类算法,它可以处理二元分类以及多元分类。虽然它名字里面有“回归”两个字,却不是一个回归算法。那为什么有“回归”这个误导性的词呢?个人认为,虽然逻辑回归是分类模型,但是它的原理里面却残留... 查看详情

逻辑回归模型logisticregression详细推导(含numpy与pytorch实现)

逻辑回归模型LogisticRegression详细推导(含Numpy与PyTorch实现)文章目录​​逻辑回归模型LogisticRegression详细推导(含Numpy与PyTorch实现)​​​​内容概括​​​​广而告之​​​​LR模型介绍​​​​符号说明​​​​Sigmoid函数​​​... 查看详情