linux源码解析10–缺页异常之写时复制(代码片段)

author author     2023-02-15     322

关键词:

接上篇 https://www.daodaodao123.com/?p=776

本篇解析缺页异常分支之一,写时复制缺页异常

1.写时复制缺页异常触发条件

(1)pte页表项的PRESENT置位 (2)pte表项为不为空 (3)vma可写,pte只读,进行写操作

2.应用场景

(1)进程fork子进程的时候,为了避免复制物理页,父子进程以只读的方式共享所有的私有的匿名页和文件页,当父子进程有一方试图去写只读页时,触发写时复制缺页异常,内核会分配新的物理页,拷贝旧的物理页到新页,然后把新页映射虚拟页;

(2)进程创建私有匿名映射,读之后写(读映射到0页,写发生COW);

(3)进程创建私有文件映射,读之后写(读映射到page cache, 写发生COW);

3.fork时做的准备

dup_mm
->dum_mmap
->copy_page_range
...
	->copy_pte_range
	->copy_present_pte
	->if(is_cow_mapping(vm_flags)&&pte_write(pte)) 
	
		ptep_set_wrprotect(src_mm, addr, src_pet);
		pte = pte_wrpotect(pte);
	

可见,对于私有的可写的页,fork时,将父子进程的页表改为只读.

注:子进程会创建一套独立新页表,只是PTE页表的内容,跟父进程页表完全一样。当先访问进程触发缺页异常时,修改的知识PTE页表,L0~2级页表是不变的。

4.两个重要函数

4.1 wp_page_copy()写时复制函数

static vm_fault_t wp_page_copy(struct vm_fault *vmf)

	struct vm_area_struct *vma = vmf->vma;
	struct mm_struct *mm = vma->vm_mm;
	struct page *old_page = vmf->page;
	struct page *new_page = NULL;
	pte_t entry;
	int page_copied = 0;
	struct mmu_notifier_range range;

	if (unlikely(anon_vma_prepare(vma))) ///检查VMA是否初始化了RMAP
		goto oom;

	if (is_zero_pfn(pte_pfn(vmf->orig_pte)))  ///PTE如果是系统零页,分配一个内容全零的页面
		new_page = alloc_zeroed_user_highpage_movable(vma,
							      vmf->address);
		if (!new_page)
			goto oom;
	 else    ///分配一个新物理页面,并且把old_page内容复制到new_page中
		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
				vmf->address);
		if (!new_page)
			goto oom;

		if (!cow_user_page(new_page, old_page, vmf)) 
			/*
			 * COW failed, if the fault was solved by other,
			 * its fine. If not, userspace would re-fault on
			 * the same address and we will handle the fault
			 * from the second attempt.
			 */
			put_page(new_page);
			if (old_page)
				put_page(old_page);
			return 0;
		
	

	if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
		goto oom_free_new;
	cgroup_throttle_swaprate(new_page, GFP_KERNEL);

	__SetPageUptodate(new_page);   ///设置PG_uptodate, 表示内容有效
	
	///注册一个mmu_notifier,并告知系统使dd_page无效
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
				vmf->address & PAGE_MASK,
				(vmf->address & PAGE_MASK) + PAGE_SIZE);
	mmu_notifier_invalidate_range_start(&range);

	/*
	 * Re-check the pte - we dropped the lock
	 */ ///重新读取PTE,并判定是否修改
	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 
		if (old_page) 
			if (!PageAnon(old_page))    ///如果oldpage是文件映射
				dec_mm_counter_fast(mm,
						mm_counter_file(old_page));     ///减少一个文件映射页面技术
				inc_mm_counter_fast(mm, MM_ANONPAGES);  ///增加匿名页面计数
			
		 else 
			inc_mm_counter_fast(mm, MM_ANONPAGES);
		
		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
		entry = mk_pte(new_page, vma->vm_page_prot);
		entry = maybe_mkwrite(pte_mkdirty(entry), vma);  ///利用new_page生成一个新PTE

		/*
		 * Clear the pte entry and flush it first, before updating the
		 * pte with the new entry, to keep TLBs on different CPUs in
		 * sync. This code used to set the new PTE then flush TLBs, but
		 * that left a window where the new PTE could be loaded into
		 * some TLBs while the old PTE remains in others.
		 */
		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);        ///刷新这个页面的TLB
		page_add_new_anon_rmap(new_page, vma, vmf->address, false);  ///new_page添加到RMAP系统中
		lru_cache_add_inactive_or_unevictable(new_page, vma);        ///new_page添加到LRU链表中
		/*
		 * We call the notify macro here because, when using secondary
		 * mmu page tables (such as kvm shadow page tables), we want the
		 * new page to be mapped directly into the secondary page table.
		 */
		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);  ///新pte设置到硬件PTE中
		update_mmu_cache(vma, vmf->address, vmf->pte);
		if (old_page)    ///准备释放old_page,真正释放操作在page_cache_release()函数
			/*
			 * Only after switching the pte to the new page may
			 * we remove the mapcount here. Otherwise another
			 * process may come and find the rmap count decremented
			 * before the pte is switched to the new page, and
			 * "reuse" the old page writing into it while our pte
			 * here still points into it and can be read by other
			 * threads.
			 *
			 * The critical issue is to order this
			 * page_remove_rmap with the ptp_clear_flush above.
			 * Those stores are ordered by (if nothing else,)
			 * the barrier present in the atomic_add_negative
			 * in page_remove_rmap.
			 *
			 * Then the TLB flush in ptep_clear_flush ensures that
			 * no process can access the old page before the
			 * decremented mapcount is visible. And the old page
			 * cannot be reused until after the decremented
			 * mapcount is visible. So transitively, TLBs to
			 * old page will be flushed before it can be reused.
			 */
			page_remove_rmap(old_page, false);
		

		/* Free the old page.. */
		new_page = old_page;
		page_copied = 1;
	 else 
		update_mmu_tlb(vma, vmf->address, vmf->pte);
	

	if (new_page)
		put_page(new_page);

	pte_unmap_unlock(vmf->pte, vmf->ptl);
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above ptep_clear_flush_notify() did already call it.
	 */
	mmu_notifier_invalidate_range_only_end(&range);
	if (old_page) 
		/*
		 * Dont let another task, with possibly unlocked vma,
		 * keep the mlocked page.
		 */
		if (page_copied && (vma->vm_flags & VM_LOCKED)) 
			lock_page(old_page);	/* LRU manipulation */
			if (PageMlocked(old_page))
				munlock_vma_page(old_page);
			unlock_page(old_page);
		
		put_page(old_page);
	
	return page_copied ? VM_FAULT_WRITE : 0;
oom_free_new:
	put_page(new_page);
oom:
	if (old_page)
		put_page(old_page);
	return VM_FAULT_OOM;

4.2 wp_page_reuse()页面复用函数

当发生COW缺页异常时,发现这个匿名页只被映射到一个vma中,则不再发生写时复制,如果vma属性为可写,直接修改页表为可写。

static inline void wp_page_reuse(struct vm_fault *vmf)
	__releases(vmf->ptl)

	struct vm_area_struct *vma = vmf->vma;
	struct page *page = vmf->page; ///获取缺页异常页面
	pte_t entry; 
	/*
	 * Clear the pages cpupid information as the existing
	 * information potentially belongs to a now completely
	 * unrelated process.
	 */
	if (page)
		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);

	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));  	   ///刷新缺页异常页面的高速缓存
	entry = pte_mkyoung(vmf->orig_pte);                           	   ///设置PTE的AF位
	entry = maybe_mkwrite(pte_mkdirty(entry), vma);               	   ///设置可写,置脏位
	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))  ///设置新PTE到实际页表中
		update_mmu_cache(vma, vmf->address, vmf->pte);
	pte_unmap_unlock(vmf->pte, vmf->ptl);
	count_vm_event(PGREUSE);

5.写时复制过程解析:

写时复制过程流程图

源码解析

static vm_fault_t do_wp_page(struct vm_fault *vmf)
	__releases(vmf->ptl)

	struct vm_area_struct *vma = vmf->vma;

	if (userfaultfd_pte_wp(vma, *vmf->pte)) 
		pte_unmap_unlock(vmf->pte, vmf->ptl);
		return handle_userfault(vmf, VM_UFFD_WP);
	

	/*
	 * Userfaultfd write-protect can defer flushes. Ensure the TLB
	 * is flushed in this case before copying.
	 */
	if (unlikely(userfaultfd_wp(vmf->vma) &&
		     mm_tlb_flush_pending(vmf->vma->vm_mm)))
		flush_tlb_page(vmf->vma, vmf->address);

	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); ///查找缺页异常地址对应页面的page数据结构,返回为NULL,说明是一个特殊页面
	if (!vmf->page)   ///处理特殊页面
		/*
		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
		 * VM_PFNMAP VMA.
		 *
		 * We should not cow pages in a shared writeable mapping.
		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
		 */
		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
				     (VM_WRITE|VM_SHARED))   ///特殊页面,且vma是可写且共享
			return wp_pfn_shared(vmf);   ///复用

		pte_unmap_unlock(vmf->pte, vmf->ptl);
		return wp_page_copy(vmf); ///vma不是可写共享页面,写时拷贝
	

	/*
	 * Take out anonymous pages first, anonymous shared vmas are
	 * not dirty accountable.
	 */
	if (PageAnon(vmf->page)) ///PageAnon判断是否为匿名页面
		struct page *page = vmf->page;

		/* PageKsm() doesnt necessarily raise the page refcount */
		if (PageKsm(page) || page_count(page) != 1)
			goto copy;
		if (!trylock_page(page))
			goto copy;
		if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) 
			unlock_page(page);
			goto copy;
		
		/*
		 * Ok, weve got the only map reference, and the only
		 * page count reference, and the page is locked,
		 * its dark out, and were wearing sunglasses. Hit it.
		 */
		unlock_page(page);  
		wp_page_reuse(vmf); ///PageAnon判断是否为匿名页面,且不为KSM匿名页面, 复用
		return VM_FAULT_WRITE;
	 else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
					(VM_WRITE|VM_SHARED))) 
		return wp_page_shared(vmf); ///处理可写的共享页面,复用
	
copy:
	/*
	 * Ok, we need to copy. Oh, well..
	 */
	get_page(vmf->page);

	pte_unmap_unlock(vmf->pte, vmf->ptl);
	return wp_page_copy(vmf);  ///处理写时复制的情况

linux源码解析11–缺页异常之swap缺页异常(代码片段)

接上篇https://www.daodaodao123.com/?p=776本篇解析缺页异常分支之一,swap缺页异常;1.swap分区的来由当系统内存不足时,首先回收pagecache页面,仍然不足时,继续回收匿名页面,但是匿名页面没有对应文件,因此建立一个swap文件,来... 查看详情

linux源码解析09–缺页异常之文件映射(代码片段)

...。(3)匿名映射为共享时,走shmem,等同文件映射处理。3.源码解析do_fault()函数staticvm_fault_tdo_fault(structvm_fault*vmf)... if(!vma->vm_ops->fault)///处理没有实现fault()回调函数的情况,出错处理... elseif(!(vmf->flags&FAULT_FLAG_WRITE)) ret=do_... 查看详情

linux内核源码分析之缺页异常

目录一、什么是缺页异常?二、处理器特定部分2.1生成页错误异常2.2处理页错误异常三、匿名页的缺页异常四、文件的缺页异常4.1处理文件页错误,具体处理读文件页错误的方法4.2文件写私有文件页错误的方法4.3文件写... 查看详情

linux0.11-写时复制-30(代码片段)

...章,通过看看Linux0.11这个最简单的操作系统,从源码层面把写时复制的原理搞清楚。很简单哦,你可别中途就放弃了。直接干!哦不行, 查看详情

linux0.11-写时复制-30(代码片段)

...章,通过看看Linux0.11这个最简单的操作系统,从源码层面把写时复制的原理搞清楚。很简单哦,你可别中途就放弃了。直接干!哦不行, 查看详情

性能优化之写时复制(copy-on-write:cow)

写入时复制(英语:Copy-on-write,简称COW)是一种计算机程序设计领域的优化策略。其核心思想是,如果有多个调用者(callers)同时请求相同资源(如内存或磁盘上的数据存储),他们会共... 查看详情

缺页中断和缺页异常

缺页异常 会出现缺页异常的情况:线性地址不在虚拟地址空间中线性地址在虚拟地址空间中,但没有访问权限接上一条,没有与物理地址建立映射关系fork等系统调用时并没有映射物理页,写数据->缺页异常->写时拷贝映... 查看详情

sylixos异常管理(代码片段)

...一种平台无关的异常管理方法。当系统产生了写时拷贝、缺页等MMU访问失效异常或其他种类异常时,SylixOS会在异常中构建异常处理线程执行陷阱,在异常退出后的任务上下文中进行异常处理,完成所有的页面操作,如果操作失... 查看详情

并发容器之写时拷贝的list和set

对于一个对象来说,我们为了保证它的并发性,通常会选择使用声明式加锁方式交由我们的Java虚拟机来完成自动的加锁和释放锁的操作,例如我们的synchronized。也会选择使用显式锁机制来主动的控制加锁和释放锁的操作,例如... 查看详情

我可以在 Linux 中进行写时复制 memcpy 吗?

】我可以在Linux中进行写时复制memcpy吗?【英文标题】:CanIdoacopy-on-writememcpyinLinux?【发布时间】:2010-12-0614:46:51【问题描述】:我有一些代码经常复制一大块内存,通常是在对其进行非常小的更改之后。我已经实现了一个跟踪更... 查看详情

linux内核源码分析之巨型页(代码片段)

目录巨型页概述ARM64处理器支持巨型页标准巨型页透明巨型页巨型页概述        当运行内存需求量较大的应用程序时,如果使用长度为4KB的页,将会产生较多的TLB未命中和缺页异常,严重影响应用程序的性能。如... 查看详情

linux内核内存管理内存映射原理②(内存映射概念|文件映射|匿名映射|内存映射原理|分配虚拟内存页|产生缺页异常|分配物理内存页|共享内存|进程内存)(代码片段)

...存映射概念二、内存映射原理1、分配虚拟内存页2、产生缺页异常3、分配物理内存页三、共享内存四、进程内存段的内存映射类型一、内存映射概念内存映射概念:"内存映射“就是在进程的”用户虚拟地址空间"中,创建一个... 查看详情

2021-12-03wpf上位机104-西门子s7协议之写数据方法流程解析(代码片段)

文章目录前言一、西门子S7协议之写数据方法流程解析二、使用步骤1.写数据总结前言随着人工智能的不断发展,物联网这门技术也越来越重要,很多人都开启了物联网学习,本文就介绍了物联网的S7报文协议。提示:以下是本篇... 查看详情

copyonwritearraylist源码解析(基于jdk8)

目录1基本属性和方法2读3写3.1add3.2remove3.3set/clear4迭代器5copyOnWriteArraySetCopyOnWriteArrayList是一种写时复制的ArrayList,在写操作时加锁,拷贝原数组成员,在拷贝的数组上进行修改,并重置数组。该类对于读写可以并发执行,如果写... 查看详情

netty源码之写数据(代码片段)

目录前言和快递比较一下几种场景发送数据的分类写数据flush数据前言write是把数据写到buf里flush是将数据发出去writeAndFlush写入数据到buf并立刻发送出去和快递比较一下 几种场景1、netty协数据,写不进去了,会停止写ÿ... 查看详情

netty源码之写数据(代码片段)

目录前言和快递比较一下几种场景发送数据的分类写数据flush数据前言write是把数据写到buf里flush是将数据发出去writeAndFlush写入数据到buf并立刻发送出去和快递比较一下 几种场景1、netty协数据,写不进去了,会停止写ÿ... 查看详情

利用“写时复制”将数据复制到 Multiprocessing.Pool() 工作进程

】利用“写时复制”将数据复制到Multiprocessing.Pool()工作进程【英文标题】:Leveraging"Copy-on-Write"toCopyDatatoMultiprocessing.Pool()WorkerProcesses【发布时间】:2016-10-3106:20:53【问题描述】:我有一点multiprocessingPython代码,看起来有... 查看详情

nacos源码解析

参考技术ANacos服务注册表结构:Map<namespace,Map<group::serviceName,Service>>举例说明:1.查看spring.factories文件中帮我们自动装配的类2.查看自动装配的类3.NacosAutoServiceRegistration里的调用链路--添加到队列里调用链路为Cluster类的成... 查看详情