[激光原理与应用-33]:典型激光器-5-不同激光器的全面综合比较

文火冰糖的硅基工坊 文火冰糖的硅基工坊     2023-03-26     639

关键词:

目录

第1章 五类激光器的性能及应用对比

第2章 各类激光器的区别特点及应用三张表看懂-超米激光

2.1 固体激光器

2.2 气体激光器

2.3 化学激光器

2.4 染料激光器

2.5 半导体激光器

2.6 光纤激光器

2.7 自由电子激光器

第3章 10多种激光器的全面梳理

3.1 激光器的分类方法

3.2 脉冲激光器峰值功率高,准连续激光器加工速度快

3.3 连续光纤激光器是高功率激光器的主要产品

3.6 近红外光是主流,绿光和远红外光各具特性

3.7 中红外光纤激光器对人眼安全,是理想医用激光光源

3.8 绿光光纤激光器光谱亮度高,转换效率高达 84%

3.9 掺镱光纤是主导,掺铒掺铥光纤工作波长各显其能


第1章 五类激光器的性能及应用对比

1.1 发展趋势

1.2 性能比较

备注:根据使用寿命可以看出,对于使用寿命比较短的激光器,必须考虑方便的更换老化的模块。

激光器是现代激光加工系统中必不可少的核心组件之一。随着激光加工技术的发展,激光器也在不断向前发展,出现了许多新型的激光器。

早期激光加工用激光器主要是大功率CO2气体激光器和灯泵浦固体YAG激光器,发展趋势主要是往激光功率提高的方向发展,但当激光功率达到一定要求后,激光器的光束质量受到重视,激光器的发展随之转移到提高光束质量上来。接连研发出了半导体激光器、光纤激光器和碟片激光器,使激光材料加工、医疗、航空航天、汽车制造等领域取得了飞速的发展。

CO2激光器、Nd:YAG激光器、半导体激光器、碟片激光器和光纤激光器作为目前市面上最常见的五类激光器,它们各自有怎样的特点及应用范围呢?

CO2激光器

应用:CO2激光器的激光波长为10.6um,对金属的吸收系数较低,一般适用于非金属材料的切割,可用于金属材料的焊接。能广泛应用于航空、电子仪表、机械、汽车等领域的焊接应用。

Nd:YAG激光器

应用:YAG激光器对金属的吸收系数较高,可以进行金属的切割、焊接、打标等应用。由于其具有能量大,峰值功率高、结构紧凑、牢固耐用、性能可靠等特点,被广泛应用于工业、国防、医疗、科研等领域。

半导体激光器

应用:半导体激光器受限于激光光束的均匀性较高,其穿透性较差,因此不适合进行金属切割应用,但其光斑的特点适合金属的表面处理,如熔覆,硬化,3D打印等。可广泛应用于航空航天、医疗,汽车等领域。

碟片激光器

应用:碟片激光器是空间光路耦合结构,因此光束质量很高,对于激光材料应用方面如金属切割、焊接、打标、激光熔覆、硬化和3D打印等均可适用,其广泛应用于汽车制造、航空航天、精密机械、3C电子等领域。

光纤激光器

应用:由于光纤激光器电光转换效率高,金属吸收系数好,光束质量高,因此可进行金属切割、焊接、打标、金属表面处理等应用。广泛应用于航空航天、汽车制造、3C电子,医疗等领域。

激光技术在工业上的应用十分广泛,但究竟选择哪一类激光器产品更合适,还是要根据每个激光器的性能和应用来选择,下面就用一张表带你看懂各类激光器的特点及应用。

第2章 各类激光器的区别特点及应用三张表看懂-超米激光

激光技术已从方方面面走进了人们的生活,但激光器种类繁多,其各自波长不同,特性不同,因此所应用的领域也不同。相信大多数人面对纷繁复杂的激光器种类,多少觉得有点头疼。因此,本文将各类型的激光器进行了汇总,为大家逐一讲解各类激光器的特点及实际应用的情况。

按工作介质不同,激光器分为固体激光器、气体激光器、染料激光器、半导体激光器、光纤激光器和自由电子激光器6种。其中固体激光器和气体激光器还有很多细分种类。除自由电子激光器外,各种激光器的基本工作原理均相同,包括泵浦源、光学谐振腔和增益介质三部分。

在固体激光器中,一般以光作为泵浦源,能产生激光的晶体或玻璃被称为激光工作物质。激光工作物质由基质和激活离子两部分组成,基质材料为激活离子提供了一个合适的存在与工作环境,而由激活离子完成激光产生过程。常用的激活离子主要是过渡金属离子,如铬、钻、镍等离子以及稀土金属离子,如钕离子等。表面镀有介质膜的反射镜作为谐振腔镜片,其中一片为全反镜,一片为半反镜。当采用不同的激活离子、不同的基质材料和不同波长的光激励,会发射出各种不同波长的激光。 固体激光器各类及应用。

2.1 固体激光器

(1)红宝石激光器

输出的激光波长为694.3nm,光电转换率低,只有0.1%。但其荧光寿命长,有利于储能,可输出较高的脉冲峰值功率,一根笔芯粗细,手指长的红宝石棒产生的激光就可以轻松的产生打穿铁皮。在效率更高的YAG激光器出现之前,红宝石激光器被广泛地用在激光切割、钻孔上。此外,694nm的光极易被黑色素吸收,因此红宝石激光器还被用于色素性病变(皮肤长斑)的治疗。

(2)钛蓝宝石激光器

因其晶体性质,具备较宽的可调谐范围(即可调波长范围),可根据需要,输出660nm-1200nm波长的光。加上倍频技术(能使光的频率翻倍,即波长减半)的成熟,波长范围可扩展到330nm-600nm。钛蓝宝石激光器被用于飞秒分光、非线性光学研究、生成白光、生成太赫兹波等,在医美方面也有应用。

(3)YAG

是钇铝石榴石的简称,该物质是目前综合特性最为优异的激光晶体基质,在掺入钕(Nd)之后可输出1064nm的光,最大连续输出功率可达1000w。早期使用惰性气体闪光灯作为激光器的泵浦源,但闪光灯泵浦方式,光谱范围宽,与激光增益介质吸收光谱重合性差,热负荷较大,造成光电转换率低的后果。因此现在使用LD(激光二极管)泵浦,可实现激光器的高效率,高功率,长寿命。Nd:YAG激光器可用于血管瘤的治疗,抑制肿瘤生长。但这种激光对组织的热损伤是非选择性的,在凝固瘤体血管的同时,多余的能量也会损伤周围正常的组织,术后容易留下瘢痕。因此,Nd:YAG激光多用于外科、妇科、五官科,而少用于皮肤科。

Yb:YAG,在YAG中掺入镱(Yb),可输出1030nm的光。Yb:YAG的泵浦波长为941nm,与输出波长非常接近,可实现91.4%的泵浦量子效率,伴随泵浦产生的热量则被抑制到10%以内(输入的能量大多数转换为输出激光的能量,少部分变成热,意味着转换效率很高),是Nd:YAG的25%~30%。Yb:

YAG已成为最引人注目的固体激光介质之一,LD泵浦的高功率Yb:YAG固体激光器成为新的研究热点,并被视为发展高效、高功率固体激光器的一个主要方向。

除了上述两种,YAG还可掺入钬(Ho)、铒(Er)等。Ho:YAG可产生对人眼安全的2097nm和2091nm激光,主要适用于光通信,雷达和医学应用。Er:YAG则输出2.9μm的光,人体对这一波长吸收率很高,对激光外科和血管外科有很大的应用潜力。

2.2 气体激光器

是利用气体作为增益介质的激光器,一般是对气体放电进行泵浦(与固体激光器大同小异,不再赘述)。气体种类有原子气体(氦氖激光器、惰性气体离子激光器、金属蒸汽激光器)、分子气体(氮气激光器、二氧化碳激光器)、准分子气体,还有通过化学反应提供泵浦能量的特殊气体激光器。气体激光器种类及应用

(1)氦氖激光器(HeNe)

是以75%以上的He和15%以下的Ne的混合气体作为增益介质,根据工作环境不同,可发出绿(543.5nm)、黄(594.1nm)、橙(612.0nm)、红(632.8nm)及三种近红外光(1152nm、1523nm和3391nm),其中红光(632.8nm)最为常用。HeNe激光器输出的光束呈高斯分布,光束质量非常稳定,虽然功率不高,但在精密测量领域有着不俗的表现。

(2)惰性气体激光器

常见的是氩离子(Ar+)和氪离子(Kr+)。其能量转化率最高可达0.6%,可长期连续稳定输出30-50w的功率,寿命超过1000h。主要用于激光显示、拉曼光谱、全息、非线性光学等研究领域以及医疗诊断、打印分色、计量测定材料加工及信息处理等方面。

(3)金属蒸汽激光器

以铜蒸气为例。铜蒸气激光器主要输出绿光(510.5nm)和黄光(578.2nm),可达到100w的平均功率和100kw的峰值功率。  其主要应用领域为染料激光器的泵浦源。此外,还可用于高速闪光照相、大屏幕投影电视及材料加工等。

(4)氮分子激光器

以氮气为增益介质,可发射337.1nm 、357.7 nm、315.9 nm的紫外光,峰值功率可达45kw。可作为有机染料激光器的泵浦光源,在激光分离同位素、荧光诊断、超高速摄影、污染检测以及医疗卫生、农业育种等方面也得到广泛应用。由于其短波长更易聚焦得到小光斑,因此还可用于加工亚微米量级的元件。

(5)二氧化碳激光器

所用的增益介质是混了氦气和氮气的二氧化碳,可输出以9.6μm和10.6μm波长为中心的远红外光。二氧化碳激光器的能量转换率高,输出功率可从几瓦到几万瓦,加上极高的光束质量,使得二氧化碳激光器在材料加工、科研、国防及医学方面均有着广泛应用。

(6)准分子

是不稳定的分子,在谐振腔内充入不同稀有气体和卤素气体的混合物而有不同波长的激光产生。常用相对论电子束(能量大于200千电子伏特)或横向快速脉冲放电来实现激励。当受激态准分子的不稳定分子键断裂而离解成基态原子时,受激态的能量以激光辐射的形式放出。在医疗、光通信、半导体显视、遥感、激光武器等领域有着广泛应用。

2.3 化学激光器

是一类特殊的气体激光器,即是一类利用化学反应释放的能量来实现粒子数反转的激光器。这类激光器大部分以分子跃迁方式工作,典型波长范围为近红外到中红外谱区。最主要的有氟化氢(HF)和氟化氘(DF)两种装置。前者可以在2.6~3.3微米之间输出15条以上的谱线;后者则约有25条谱线处于3.5~4.2微米之间。这两种器件目前均可实现数兆瓦的输出。由于其能量巨大,一般用于核工程及军事领域。 其他常用激光器种类及应用

2.4 染料激光器

是使用有机染料作为激光介质的激光,通常是一种液体溶液。相比气体的和固态的激光介质,染料激光器通常可以用于更广泛的波长范围内。由于有宽阔的带宽,使得它们特别适合于可调谐激光器和脉冲激光器。但由于其介质寿命短,输出功率受限,基本被钛蓝宝石等波长可调的固体激光器取代。

2.5 半导体激光器

     是用半导体材料作为工作物质的激光器,激励方式有电注入、电子束激励和光泵浦三种形式。体积小,价格低,效率高,使用寿命长,功耗低,可用于电子信息、激光打印、激光笔、光通信、激光电视、小型激光投影仪、电子信息、集成光学等领域,是最实用最重要的一类激光器。

2.6 光纤激光器

    是指用掺稀土元素玻璃光纤作为增益介质的激光器,应用范围非常广泛,包括激光光纤通讯、激光空间远距通讯、工业造船、汽车制造、激光雕刻激光打标激光切割、印刷制辊、金属非金属钻孔/切割/焊接(铜焊、淬水、包层以及深度焊接)、军事国防安全、医疗器械仪器设备、大型基础建设,作为其他激光器的泵浦源等等。

2.7 自由电子激光器

     是一类不同于传统激光器的新型高功率相干辐射光源,它不需要气体、液体或固体作为工作物质, 而是将高能电子束的动能直接转换成相干辐射能.因此, 也可以认为自由电子激光器的工作物质就是自由电子。它具有高功率、高效率、波长的大范围调谐和超短脉冲的时间结构等一系列优良特性,除了它, 还没有一种激光器能同时具备这些特点。在物理学研究、激光武器、激光聚变、光化学、光通讯等领域均有非常可观的前景。

第3章 10多种激光器的全面梳理

3.1 激光器的分类方法

光纤激光器有多种分类方法,其中较为常见的是按工作方式分类、按波段范围分类及按介质掺杂稀土元素分类。

激光器通常也是根据这三个分类中的一至两个来命名的,例如 IPG的 YLM-QCW 系列即翻译为准连续掺镱光纤激光器。

光纤激光器应用领域广泛,不同细分的激光器特质不同,适合的应用领域各异。

例如中红外波段对于人眼来说是安全的,且在水中能够被很强的吸收,是理想的医用激光光源;

掺铒光纤由于其合适的波长可以打开光纤通信窗口,在光纤通信领域应用较广;

绿光激光由于其可见性,在娱乐与投影等方面必不可少。

3.2 脉冲激光器峰值功率高,准连续激光器加工速度快

光纤激光器按照工作方式可以分为锁模光纤激光器、调Q光纤激光器、准连续光纤激光器及连续光纤激光器。

脉冲光纤激光器的技术途径主要有调Q技术、锁模技术和种子源主振荡功率放大(MOPA)技术。

锁模技术可以实现飞秒或皮秒量级的脉冲输出,且脉冲的峰值功率较高,一般在百万瓦量级,但是其输出的脉冲平均功率较低;

调Q光纤激光器可以获得脉宽为纳秒量级、峰值功率千瓦量级脉冲能量百万焦量级的脉冲激光。

准连续激光器的脉冲宽度为微秒级,而连续激光由泵浦源持续提供能量,长时间地产生激光输出。

3.3 连续光纤激光器高功率激光器的主要产品

连续激光器的激光输出是连续的,广泛运用于激光切割、焊接和熔覆领域。

激光泵浦源持续提供能量,长时间地产生激光输出,从而得到连续激光。

连续激光器中各能级的粒子数及腔内辐射场均具有稳定分布。其工作特点是工作物质的激励和相应的激光输出,可以在一段较长时间范围内以连续方式持续进行,以连续光源激励的光纤激光器即为连续光纤激光器。相比其他类型激光器,连续光纤激光器能达到相对较高的功率,IPG已经生产出单模2万瓦连续光纤激光器,较常用于激光切割、焊接和熔覆领域

3.4 准连续光纤激光器可双模式运转,显著提升加工速度

准连续激光器可以同时在连续高峰值功率脉冲模式下工作。据 IPG 官网,传统的连续(CW)激光的峰值和平均功率在 CW 和 CW/调制模式中总是相同的,而准连续激光器在脉冲模式下的峰值功率要比平均功率高出10倍。因此,这样能够在从几十赫兹到几千赫兹的重复频率下产生具有高能量的微秒毫秒脉冲,并且可实现数千瓦的平均功率峰值功率

准连续光纤激光器将提供更高电光转换效率,并显著提高加工速度及生产效率。准连续光纤激光器与其它激光系统相比可提供十倍的光电转换效率增量,在被动式冷却方案下能够实现大于30%的电光转换效率。由于其较高的平均功率和脉冲重复频率,其加工速度是大多数激光器的3-4倍。显著降低的电力费用,没有消耗品及零配件,低维护需求,没有预热时间要求,影响叠加将带来成本优化。

3.5 脉冲光纤激光器可压缩能量,输出高峰值功率

脉冲光纤激光器又分为调Q光纤激光器和锁模光纤激光器。 

调Q技术就是要使激光能量压缩在很短的时间间隔之内,形成高峰值功率窄脉宽激光输出

调Q的原理是在激光器内加入一个损耗可调节器件(如AOM),在大部分时间区域内,激光器的损耗很大,几乎无光输出,在某一个较短的时间内,减小器件的损耗,从而使激光器输出一个强度较高的短脉冲。

Q开关是调Q技术的核心器件,可以通过主动或者被动方式实现调Q光纤激光器。

调Q脉冲光纤激光器具有高峰值功率、高单脉冲能量、光斑直径大小可选等特点,广泛应用于非金属、具有高反特性的金、银、铜、铝及非高反材料不锈钢等材料的打标、精密加工、图文标记、深雕刻,薄片精密切割,钻孔等领域。在打标应用方面,相比 CO2 激光器成本更低廉,性能更稳定。

锁模脉冲光纤激光器即通过主动锁模或者被动锁模方法来产生超短脉冲。受限于调制器的响应时间,主动锁模产生的脉宽较宽一般为皮秒量级;被动锁模利用的是被动锁模器件,响应时间很短,可以产生飞秒量级的脉冲。锁模的简要原理是采取合适的措施,使谐振腔中相互独立的纵模在相位上存在一定的关系,即使得相邻纵模的位相差为一常数,则激光器将会输出脉宽极窄、高峰值功率的脉冲。

锁模脉冲激光器具有出色的光束质量,超短脉宽和高脉冲能量等优点,适用于各种材料的微加工工艺,包括金属,玻璃,陶瓷,硅和塑料。在医疗领域,锁模激光器也被用于激光手术刀或眼科手术之中,也有使用例如光化学效应对于某些皮肤护理。由于具有短脉冲和高峰值功率的特点,锁模激光器广泛应用于各种方法的成像,显微镜和光谱学中,还应用于集成电子电路上的电光采样测量及距离测量和频率计量计时等领域。

3.6 近红外光是主流,绿光和远红外光各具特性

光纤激光器直接输出的激光多为波长在960nm-2.05μm之间的近红外光

激光器大类按照波长由短到长的顺序涵盖了从X射线到远红外的各类激光器,波长从0.001纳米到1000微米不等。其中光纤激光器直接输出的激光主要在近红外部分。但为了实现不同应用需要,光纤激光器通过倍频可以输出可见光,主要应用是绿光;通过在光纤中掺氟化物可以输出中红外光。

3.7 中红外光纤激光器对人眼安全,是理想医用激光光源

中红外激光的波长主要在 23 微米到 3.9 微米左右,需要掺稀土离子的氟化物玻璃光纤介质来激发。从下图光纤激光器红外跃迁产生的荧光光谱中可知,掺钬离子(Ho3+)及掺铒离子(Er3+)被在合适的介质条件下被激发可以直接产生中红外激光。氟化物玻璃光纤激光器在2.3~3.5μm波段具有较高的效率和输出功率,而波长超过3.5μm,能够满足光纤传输和稀土离子跃迁辐射所需低声子能量的材质非常少。单掺 Ho3+氟化物光纤激光器在低温下产生 3.9μm 波段激光,是目前直接输出的最长波长。

中红外激光器由于其波长特性可打开大气窗口,在激光制导、定位和测量等方面应用较广。在军事方面,激光的定向能量和穿过大气传输窗口的远距离传输方面的应用都需要很强的光束能量。在红外导弹对抗当中,中红外激光器可以获得3~5μm 波段的大气传输窗口。数千瓦单模输出的中红外光纤激光器或将进一步大量的应用在反巡航导弹、火箭制导和无人机空域侦查等国防战争平台中。

中红外光纤激光器由于其方向性强及人眼安全的特性,已被广泛运用于医疗领域。中红外激光的波段对于人眼来说是安全的,且在水中能够被很强的吸收,由于激光方向性强的特点,在激光手术中可以达到组织穿透深度浅,对身体损伤的区域很小,从而使手术达到高的精度。在现代医学中,中红外激光在医疗应用中主要是利用光热效应达到治疗或消融病变组织,已经被广泛地应用于骨科、消化科及泌尿科等,成为理想的医用激光光源,用于烧蚀和切割泌尿组织,汽化和切除衰竭的器官等。在富含脂质、骨骼和含蛋白质的组织切割过程中,使用中红外激光器都会附带较小的损伤。

3.8 绿光光纤激光器光谱亮度高,转换效率高达 84%

光纤激光器通过倍频可获得绿光输出。倍频绿光光纤激光器虽然不是严格意义上的绿光光纤激光器,因为其激活介质并不直接释放532纳米的激光束,此类型的光纤激光器提供了较窄范围的脉冲持续时间和高达600kHz 的重复频率,高光谱亮度的激光源促成了高效的转换,实现84%的转换效率及大于20%的电光转换效率,且具备升级到355和266纳米下高功率的可行性。

绿光激光器在印刷、医疗、数据存储、军事、生物等领域都有广泛的应用。如 IPG 的绿光光纤激光器可以运用在粒子成像、测速/流量可视化、影像诊断及手术、光学捕获/光学镊子、太阳能电池制造、制造检验&质量控制、全息和干涉测量、娱乐与投影等领域。

3.9 掺镱光纤是主导,掺铒掺铥光纤工作波长各显其能

光纤激光器主要采用掺杂稀土元素的光纤作为增益介质,不同稀土元素对应相异的工作波长。掺杂光纤就是向光纤纤芯中掺入杂质,如稀土元素离子,会导致光纤改性并显现出激光效应。其工作原理是泵浦光首先经过耦合系统耦合进入掺杂稀土离子的增益介质,随后掺杂纤芯中的稀土离子吸收泵浦光子能量发生能级跃迁。如元素铒(Er3+)、镨(Pr3+)、铥(Tm3+)、钕(Nd3+)和镱(Yb3+)等稀土离子都可作为掺杂物制成光纤,随后做成掺杂光纤放大器(XDFA)和光纤激光器(XDFL),不同的稀土元素工作的波长范围不同,但都处于近红外范围内.

3.10 掺镱光纤激光器是激光器产业中的主导力量

掺镱光纤激光器以其稳定性高、光束质量好、斜率效率高等优势得到较快发展。掺镱光纤具有很多优势,利用掺镱光纤研制的光纤激光器具有较高的斜率效率和光光转换效率,可以在 1μm 波段得到高功率的激光输出,因此受到广泛关注并得到飞速发展,成为激光器产业中的主导力量,在工业加工、医疗和国防等领域具有很好的应用前景,锐科激光的大部分激光产品采用的都是掺镱光纤。

掺镱光纤激光器主要应用于连续激光器及脉冲调Q激光器方面。由于镱离子能级结构简单,粒子损耗较小使激光器在高功率运转情况下有较高的转换效率和较低的热效应,增益带宽很大(975nm~1200nm)。同时,镱离子的上能级寿命比较长,通常在1毫秒左右,这些因素都有利于调Q技术,因此在脉冲激光器方面已实现了超短脉冲输出。在连续激光器方面,掺镱光纤激光器输出功率已达到万瓦量级。

3.11 掺铒光纤激光器是独特的光纤通信窗口

掺铒光纤激光器具有人眼安全波长及超高脉冲能量的特点。掺铒光纤激光器可以实现单模运行,具有极窄的线宽,良好的单色性和稳定性。铒离子具有较宽的增益带宽,能加剧激光器腔内多模振荡,从而实现超短脉冲激光。因其对人眼安全等独有的特点(“人眼安全”是指该波长为 1.5 μm 的激光器显著低于人眼损伤阙值),在自由空间光通信、激光雷达、环境检测、工件校准以及工业加工领域有着广泛的实际应用。

掺铒光纤由于其合适的波长,在光纤通信领域获得越来越广泛的应用。由于掺铒光纤在1550nm 波长具有很高的增益,它约 40nm 宽的增益光谱轮廓正对应光纤通信低损耗的最佳窗口,具有潜在的应用价值。

3.12 掺铥光纤激光器可改善含水材料的吸收特性

掺铥光纤激光器具有阈值低、效率高、光束质量好等特点。掺铥光纤激光器是人眼安全波长领域光纤激光器的研究热点,而且掺铥光纤激光器可以在 S 波段(150 - 75mm )工作,对于开发潜在的通信资源频率空间,提高光纤通信系统的容量起着十分重要的作用。调 Q 开关和连续掺铥光纤激光器在过去的几年里已经发展到更高的平均功率,现在已经有一定数量的供应商能提供平均功率为 10W 的商用脉冲激光器。

掺铥光纤激光器被广泛应于激光医疗、激光雷达、空间光遥感等领域。掺铥光纤激光器输出的激光波长位于 2μm 左右。液态水的强吸收带在约 1950nm,这足够接近标准铥光纤激光器的波长,从而显著提高吸收特性。水普遍存在于许多有机和无机化合物中,意味着大量材料改善了 2μm 光谱范围的吸收特性,因此掺铥光纤激光器被认为是应用于医学、眼睛安全、超快光学、近距离遥感、生物学的比较理想的光源,具有很好的发展前景。同时在医学的领域方面,掺铥光纤激光器也有很多方面的应用,包括加速汽化、超精细的切割工艺、以及在医学中的凝结止血。大功率的掺铥光纤激光器除了可以用于人眼的安全波长和激光雷达光源以外,还能够当做固态晶体激光器的泵浦源来使用,进一步来实现波长更长红外激光器的输出。

3.13 光纤激光器性能优势突出,替代效果明显

(1)二氧化碳激光器光转化效率低,使用成本高

二氧化碳激光器是一种分子激光,常用高功率连续激光器之一,主要物质是二氧化碳分子。CO2激光器主要结构包括激光管、光学谐振腔、电源及泵浦。主要特点是输出功率大并可实现连续工作,但是结构复杂体积大、维护较困难。

实现粒子数反转是二氧化碳激光器发光的关键。二氧化碳激光器中工作物质包括二氧化碳、氮气和氦气,输入直流电源后混合气体中的氮分子会受到电子撞击从而被激发,收到激发后的氮分子与二氧化碳分子碰撞时会将能量传递给二氧化碳分子,从而使得二氧化碳分子从低能级跃迁到高能级上形成粒子数反转发出激光。

光纤与二氧化碳激光器各有所长,应根据不同需求选取不同工具。从目前应用最广泛的切割加工技术来说,光纤激光器与CO2激光器在面对特定应用需求时有其各自的优势与劣势,并不能完全相互替代而需要互补共存。从加工材料类型来看,受限于吸收效果光纤激光器不适用于切割非金属材料,而常规的CO2激光器不适用于切割铜材、铝材等高反射率材料;从切割速度看,CO2 在厚度>6mm 板材有优势,而光纤激光器切割薄板速度较快;激光切割前需要进行工件穿透,CO2穿孔速度明显快于光纤激光器;从切割断面质量来看,CO2激光器整体优于光纤激光器。

光纤激光器光转化效率更高,使用成本较低。根据测算可得,光纤激光器的使用成本为 23.4 元/小时,二氧化碳激光器的使用成本为 39.1 元/小时,其中,光纤激光器电力成本为 7 元/小时,水冷成本为 8.4 元/小时,其他成本为 8 元/小时;二氧化碳激光器电力成本为 21 元/小时,水冷成本为 12.6 元/小时,其他成本为 5.5 元/小时。

(2)YAG 激光器能量转换效率低,或被逐渐替代

YAG 激光器一般指的是 Nd.YAG 激光器(掺铷钇铝石榴石晶体),属于固体激光。晶体内铷原子含量为 0.6~1.1%,可产生脉冲激光或连续激光,发射光为波长 1.064μm 的红外线。Nd.YAG 激光器常用氪气或氙气灯管作为泵浦灯,因为仅有少数特定波长泵浦光会被Nd 离子吸收,大部分能量会转变成热能,通常情况下 YAG 激光器能量转换效率较低。

随着光纤激光器的发展,YAG激光器或将逐渐被替代。YAG激光器在工业中主要用于切割和焊接工艺,但随着光纤激光器的发展,YAG激光器或逐渐被光纤激光器所替代。在切割领域中,YAG激光器购置成本低,能切割高反光材料,但加工功率低、能耗比大且切割速度较慢,而光纤激光器功率高效率快且免调节免维护;在焊接领域中,准连续光纤激光器出现后开始快速替代脉冲Nd:YAG激光器。与 YAG 激光器相比,准连续光纤激光器可以在微秒至毫秒的脉宽下提供数焦耳到数十焦耳的脉冲能量,其较高的平均功率和脉冲重复频率显著提高了加工速度以及生产效率,相当于同时具备YAG激光器的钻孔和焊接优势以及CO2激光器的切割能力,应用范围更广泛。

(3)半导体激光器现阶段技术仍存局限

半导体激光器又称激光二极管,采用半导体材料作为工作物质。常用工作物质有砷化镓、硫化镉等,激励方式有电注入、电子束激励和光泵浦三种方式。

半导体激光器主要优点是体积小、效率高能耗低,广泛用于激光通信、激光打医学治疗等领域。此外,通常使用半导体激光器作为光纤激光器泵浦源。

以电注入式半导体激光器为例,半导体材料中通常会添加GaAS(砷化镓)、InAS(砷化铟)、Insb(锑化铟)等材料制作成半导体面结型二极管,当对二极管注入足够大的电流后,中间有源区中电子(带负电)与空穴(带正电)会自发复合并将多余的能量以光子的形式释放,再经过谐振腔筛选放大后形成激光。

直接半导体激光器特点明显,下游应用领域广泛。直接半导体激光器结构紧凑,维护费用低,电光转换效率高达47%,在工业中主要应用为焊接及熔覆。低功率半导体激光器主要应用于塑料焊接以及锡焊,通过光纤输出焊接,实现非接触远距离操作,方便与自动化生产线集成;千瓦级直接半导体可用于熔覆及五金焊接,具有光斑大、电光转换率高的特点。在工业外领域,半导体激光器也被广泛用于军事、信息及医疗和生命科学等方面。

半导体激光器具有加工应用潜力,但受限于技术缺陷存在局限性。研究表明直接半导体激光器具有较强的材料加工应用潜力,相比光纤激光器和二氧化碳激光器具有更好的切割速度和切割质量。但半导体激光器最大的缺点在于其在高激光功率时光束质量低下,目前工业半导体激光器局限于少数几种加工,诸如电镀、铜焊和越来越多的高功率焊接,因此在未来数年,半导体激光器不太可能使整个材料加工领域发生革命性变化或取代其它光源。

根据上文中的分析,我们认为相比 CO2 激光器及 YAG 激光器,光纤激光器成本及应用优势明显,或将实现逐步替代。同时,半导体激光器仍受限于技术瓶颈,目前存在局限性,在未来数年不太能取代其他光源。因此,光纤激光器渗透率提升空间广阔。

[激光原理与应用-32]:典型激光器-4-半导体泵浦固体激光器

目录第1章概述1.1什么是半导体泵浦固体激光器1.2优势1.3典型的波长第2章半导体泵浦固体激光器的种类2.1端面泵浦固体激光器2.2侧面泵浦固体激光器第1章概述1.1什么是半导体泵浦固体激光器半导体泵浦固体激光器(DiodePumpSoli... 查看详情

[激光原理与应用-29]:典型激光器-1-固体激光器

目录第1章什么是固体激光器1.1什么是固体激光器1.2固体激光器特点1.3特性1.4分类1.5波长第2章固体激光器的组成2.1固体工作物质2.2激励源第1章什么是固体激光器1.1什么是固体激光器用固体激光材料作为工作介质的激光器。固体激... 查看详情

[激光原理与应用-30]:典型激光器-2-气体激光器(连续激光器)

目录第1章概览1.1什么气体激光器1.2主要激励方式1.3发展历程1.4组成1.5特点第2章 气体激光器分类2.1原子气体激光器2.2离子气体激光器2.3分子气体激光器2.4准分子激光器第1章概览1.1什么气体激光器气体激光器利用气体作为工作物... 查看详情

[激光原理与应用-19]:《激光原理与技术》-5-激光器的增益损耗自激振荡条件

目录第1章损耗与损耗系数1.1损耗1.2吸收系数1.3 吸收光谱第2章增益与增益系数2.1增益2.2增益饱和2.3增益谱线2.4 单位增益带宽第3章 自激振荡3.1什么是自激振荡3.2增益系数与损耗系数的关系3.3光学谐振腔与自激震荡第1章损耗与... 查看详情

[激光器原理与应用-5]:激光二极管ld(laserdiode)与激光二极管驱动器(ld驱动器)

作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:目录第1章什么是半导体激光二极管1.1 半导体激光二极管概述1.2什么是泵浦源1.3应用第2章 半导体激光二极管... 查看详情

[激光原理与应用-21]:《激光原理与技术》-7-激光技术大汇总与总体概述

目录前言:第1章什么是激光技术1.1 什么是激光技术1.2激光技术的分类方法第2章激光的应用技术2.1激光加工技术2.2激光快速成型2.3激光切割2.4激光焊接2.5激光雕刻2.6激光打孔2.7激光蚀刻2.8激光手术2.9激光武器2.10激光能源2.11... 查看详情

[激光原理与应用-15]:《激光原理与技术》-1-什么是激光,激光概述

目录第1章什么是激光1.1什么是激光1.2激光在生活中应用第2章激光的特点2.1方向性好(平行性、直线性)2.2 单色性好(颜色纯度高)2.3相干性比太阳光好2.4亮度高2.5能量极大第3章光产生的方式与核心概念3.1自发... 查看详情

[激光原理与应用-48]:《焊接质量检测》-5-德擎先进激光过程诊断系统alpas分析

...3章工作原理第4章系统组成第5章案例分析第1章概述先进激光过程诊断系统(ALPAS-AdvancedLaserProcessAssessmentSystem)系列产品,主要包括:缺陷检测(ALPAS-WDD)熔深测量(ALPAS-WDMÿ 查看详情

[激光器原理与应用-4]:激光器的内部结构与工作原理

...辐射1.3 受激辐射、激光1.4激光的难点1.5 粒子数反转1.6激光器的发展1.7激光的频率与能量1.8电磁波谱第2章激光器的结构2.1 激励 查看详情

[激光器原理与应用-13]:2022年中国激光行业产业链全景梳理

目录前言:1.激光全产业链:上、中、下游与终端应用2. 产业链上的公司3.激光产业链区域分布地图:广东、江苏、湖北产业链最完善4. 激光产业产业园区分布图:我国激光产业园区集中在鲁、粤、鄂5.规模以上... 查看详情

[激光器原理与应用-3]:激光器的国外品牌

目录前言:第1章激光,一把最快的刀第2章国外激光器公司2.1美国2.2德国前言:激光器——能发射激光的装置。目前用于光纤激光切割和光纤激光焊接的激光器品牌大大小小有几十个,市场上常见的有以下品牌ÿ... 查看详情

[激光原理与应用-28]:《激光原理与技术》-14-激光产生技术-激光的主要参数与指标

目录1、 激光器的门限电流与功率输出2、激光器的调制增益3、功率/能量密度6、额定功耗7、转换效率8、光斑大小9、线宽10、激光器的谱线宽度。11、激光器的相对强度噪声RIN。12、激光器的线性范围。13、带内平坦度14、激光器... 查看详情

[激光原理与应用-25]:《激光原理与技术》-11-激光产生技术-非线性技术之激光倍频非线性晶体clbobbolbo

目录第1章什么是激光倍频1.1什么是激光倍频1.2激光倍频的好处第2章激光倍频的基本原理2.1基本原理2.2倍频的条件2.3分类第3章倍频晶体3.1BBO,LBO晶体3.2CLBO(六硼酸铯锂)晶体第1章什么是激光倍频1.1什么是激光倍频激... 查看详情

[激光原理与应用-57]:激光器-光学-常见光学镜片介绍

目录第1章 光学镜片和普通镜片1.1光学镜片和普通镜片的区别1.2什么是光学镜片1.3 反射镜1.4透镜1.5镜片镀膜第2章光学镜片的类型2.1 半透镜2.2半透半反反射镜-分束镜2.3 凸透镜2.4 凹透镜2.5 准直镜2.6偏振镜片2.7分色镜与分色反... 查看详情

[激光原理与应用-42]:《光电检测技术-9》-激光干涉仪

目录第1章激光干涉仪的构成与原理1.1 激光干涉仪的构成1.2激光干涉仪的作用原理第2章激光干涉仪的主要技术2.1稳频技术2.2准直技术2.3光线反射器2.4干涉条纹计数以及判向原理2.5大气修正2.6分光器2.7干涉条纹的移相2.8零光程差... 查看详情

[激光器原理与应用-10]:激光器分类

...blog.csdn.net/HiWangWenBing/article/details/126435693目录第1章什么是激光器第2章激光器分类2.1按照按照增益介质2.2按照输出功率2.3 按输出波长2.4按工作方式2.5按脉 查看详情

[激光原理与应用-23]:《激光原理与技术》-9-控制技术-锁模技术

...的条件1.5锁模后的激光输出1.6锁模的实现方法1.7超短脉冲激光器的发展第2章锁模与激光脉冲2.1周线性、连续信号的傅里叶级数2.2 周期、离散信号的傅里叶级数2.3 周期矩形脉冲信号2.4脉冲信 查看详情

[激光原理与应用-22]:《激光原理与技术》-8-控制技术-选模技术:横模纵模

目录第1章什么是激光的模式1.1激光的特性参数1.2激光的“模”1.3选模第2章纵模2.1什么是纵模2.2纵模的决定因素2.3单纵模的选模方法第3章横模3.1什么是横模3.2纵模的决定因素3.3单横模的选择方法3.4光阑第1章什么是激光的模式1.1... 查看详情