pytorch之基于经典网络架构训练图像分类模型(代码片段)

虚心求知的熊 虚心求知的熊     2023-04-12     698

关键词:

文章目录

本文参加新星计划人工智能(Pytorch)赛道:https://bbs.csdn.net/topics/613989052

一、 模块简单介绍

  • 我们可以进入 pytorch 的官方网站,对模型的基本架构和训练好的参数进行直接调用,具体链接如下 https://pytorch.org/

1. 数据预处理部分

  • (1) 数据增强通过 torchvision 中 transforms 模块的自带功能实现,比较实用。
  • (2) 数据预处理通过 torchvision 中 transforms 也帮我们实现好了,直接调用即可。
  • (3) DataLoader 模块可以直接读取 batch 数据。

2. 网络模块设置

  • (1) 加载预训练模型,torchvision 中有很多经典网络架构,调用起来十分方便,并且可以用人家训练好的权重参数来继续训练,也就是所谓的迁移学习。
  • (2) 需要注意的是别人训练好的任务跟咱们的可不是完全一样,需要把最后的 head 层改一改,一般也就是最后的全连接层,改成咱们自己的任务。
  • (3) 训练时可以全部重头训练,也可以只训练最后咱们任务的层,因为前几层都是做特征提取的,本质任务目标是一致的。

3. 网络模型保存与测试

  • (1) 模型保存的时候可以带有选择性,例如在验证集中如果当前效果好则保存。
  • (2) 读取模型进行实际测试。

import os
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
import torch
from torch import nn
import torch.optim as optim
import torchvision
#pip install torchvision
from torchvision import transforms, models, datasets
#https://pytorch.org/docs/stable/torchvision/index.html
import imageio
import time
import warnings
import random
import sys
import copy
import json
from PIL import Image

二、数据读取与预处理操作

  • 在最开始,我们先进行训练集和测试集的数据读取。
data_dir = './flower_data/'
train_dir = data_dir + '/train'
valid_dir = data_dir + '/valid'

1. 制作数据源

  • 由于整体数据集较少,因此,我们通过 data_transforms 进行数据增强,指定所有图像预处理操作,包括旋转,裁剪,水平翻转、垂直翻转等等。
  • 需要注意的是,这里分为训练集和数据集两部分。
data_transforms = 
    'train': transforms.Compose([transforms.RandomRotation(45),#随机旋转,-45到45度之间随机选
        transforms.CenterCrop(224),#从中心开始裁剪
        transforms.RandomHorizontalFlip(p=0.5),#随机水平翻转 选择一个概率概率
        transforms.RandomVerticalFlip(p=0.5),#随机垂直翻转
        transforms.ColorJitter(brightness=0.2, contrast=0.1, saturation=0.1, hue=0.1),#参数1为亮度,参数2为对比度,参数3为饱和度,参数4为色相
        transforms.RandomGrayscale(p=0.025),#概率转换成灰度率,3通道就是R=G=B
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])#均值,标准差
    ]),
    'valid': transforms.Compose([transforms.Resize(256),
        transforms.CenterCrop(224),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),

  • 在数据加强完后,我们将单次传递给程序用以训练的数据也就是样本的个数设置为 8。
  • 在传入数据集的时候,第一个参数是我们原始数据的路径,第二个参数是我们的数据增强方法。
batch_size = 8
​
image_datasets = x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'valid']
dataloaders = x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_size, shuffle=True) for x in ['train', 'valid']
dataset_sizes = x: len(image_datasets[x]) for x in ['train', 'valid']
class_names = image_datasets['train'].classes
  • 接下来,我们读取数据集的基本信息,包括训练集中的数据个数,存储路径等等信息,测试集也是相同的。
image_datasets
#'train': Dataset ImageFolder
#     Number of datapoints: 6552
#     Root location: ./flower_data/train
#     StandardTransform
# Transform: Compose(
#                RandomRotation(degrees=(-45, 45), resample=False, expand=False)
#                CenterCrop(size=(224, 224))
#                RandomHorizontalFlip(p=0.5)
#                RandomVerticalFlip(p=0.5)
#                ColorJitter(brightness=[0.8, 1.2], contrast=[0.9, 1.1], saturation=[0.9, 1.1], #hue=[-0.1, 0.1])
#                RandomGrayscale(p=0.025)
#                ToTensor()
#                Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
#            ), 'valid': Dataset ImageFolder
#     Number of datapoints: 818
#     Root location: ./flower_data/valid
#     StandardTransform
# Transform: Compose(
#                Resize(size=256, interpolation=PIL.Image.BILINEAR)
#                CenterCrop(size=(224, 224))
#                ToTensor()
#                Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
#            )
  • 我们也可以打印 dataloaders 中的信息,包含训练集和测试集两个。
dataloaders
#'train': <torch.utils.data.dataloader.DataLoader at 0x21c5388b2b0>,
# 'valid': <torch.utils.data.dataloader.DataLoader at 0x21c539a80b8>
  • 查看 dataset 中的数据数量,其中训练集包含 6552 个样本,测试集中包含 818 个样本。
dataset_sizes
#'train': 6552, 'valid': 818

2. 读取标签对应的实际名字

  • 在我们的文件当中,包含一个 json 文件,这中间包含了基本的标签信息,每个数字对应一种花的种类,在此,我们对这些信息进行读取。

with open('cat_to_name.json', 'r') as f:
    cat_to_name = json.load(f)
cat_to_name

3. 展示数据

  • 在展示数据时,需要注意 tensor 的数据需要转换成 numpy 的格式,而且还需要还原回标准化的结果。
  • 由于现在的数据都是已经处理完成后的数据,因此,如果我们想要展示的话需要对这些数据进行还原。
def im_convert(tensor):
    """ 展示数据"""
    
    image = tensor.to("cpu").clone().detach()
    image = image.numpy().squeeze()
    image = image.transpose(1,2,0)
    image = image * np.array((0.229, 0.224, 0.225)) + np.array((0.485, 0.456, 0.406))
    image = image.clip(0, 1)return image
  • 在还原完成后,我们只需要对其中的数据进行读取即可,这里展示 8 个数据为例。
fig=plt.figure(figsize=(20, 12))
columns = 4
rows = 2
​
dataiter = iter(dataloaders['valid'])
inputs, classes = dataiter.next()for idx in range (columns*rows):
    ax = fig.add_subplot(rows, columns, idx+1, xticks=[], yticks=[])
    ax.set_title(cat_to_name[str(int(class_names[classes[idx]]))])
    plt.imshow(im_convert(inputs[idx]))
plt.show()

三、模型构建与实现

1. 加载 models 中提供的模型,并且直接用训练的好权重当做初始化参数

  • 第一次执行需要下载,可能会比较慢,大家不必担心。
model_name = 'resnet'  #可选的比较多 ['resnet', 'alexnet', 'vgg', 'squeezenet', 'densenet', 'inception']
  • 在下载完成后,通过设置 feature_extract 为 True 或 False,决定是否用人家训练好的特征来做,这里直接使用人家训练好的特征,也就是设置为 True。
feature_extract = True 
  • 之后,我们决定是否用 GPU 进行训练。
train_on_gpu = torch.cuda.is_available()if not train_on_gpu:
    print('CUDA is not available.  Training on CPU ...')
else:
    print('CUDA is available!  Training on GPU ...')
    
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
#CUDA is available!  Training on GPU ...
  • 进行模型架构的打印。
def set_parameter_requires_grad(model, feature_extracting):
    if feature_extracting:
        for param in model.parameters():
            param.requires_grad = False
            
model_ft = models.resnet152()
model_ft

2. 参考 pytorch 官网例子

  • 选择合适的模型,不同模型的初始化方法稍微有点区别,具体的代码如下所示。
def initialize_model(model_name, num_classes, feature_extract, use_pretrained=True):
 
    model_ft = None
    input_size = 0if model_name == "resnet":
        """ Resnet152
        """
        model_ft = models.resnet152(pretrained=use_pretrained)
        set_parameter_requires_grad(model_ft, feature_extract)
        num_ftrs = model_ft.fc.in_features
        model_ft.fc = nn.Sequential(nn.Linear(num_ftrs, 102),
                                   nn.LogSoftmax(dim=1))
        input_size = 224elif model_name == "alexnet":
        """ Alexnet
        """
        model_ft = models.alexnet(pretrained=use_pretrained)
        set_parameter_requires_grad(model_ft, feature_extract)
        num_ftrs = model_ft.classifier[6].in_features
        model_ft.classifier[6] = nn.Linear(num_ftrs,num_classes)
        input_size = 224elif model_name == "vgg":
        """ VGG11_bn
        """
        model_ft = models.vgg16(pretrained=use_pretrained)
        set_parameter_requires_grad(model_ft, feature_extract)
        num_ftrs = model_ft.classifier[6].in_features
        model_ft.classifier[6] = nn.Linear(num_ftrs,num_classes)
        input_size = 224elif model_name == "squeezenet":
        """ Squeezenet
        """
        model_ft = models.squeezenet1_0(pretrained=use_pretrained)
        set_parameter_requires_grad(model_ft, feature_extract)
        model_ft.classifier[1] = nn.Conv2d(512, num_classes, kernel_size=(1,1), stride=(1,1))
        model_ft.num_classes = num_classes
        input_size = 224elif model_name == "densenet":
        """ Densenet
        """
        model_ft = models.densenet121(pretrained=use_pretrained)
        set_parameter_requires_grad(model_ft, feature_extract)
        num_ftrs = model_ft.classifier.in_features
        model_ft.classifier = nn.Linear(num_ftrs, num_classes)
        input_size = 224elif model_name == "inception":
        """ Inception v3
        Be careful, expects (299,299) sized images and has auxiliary output
        """
        model_ft = models.inception_v3(pretrained=use_pretrained)
        set_parameter_requires_grad(model_ft, feature_extract)
        # Handle the auxilary net
        num_ftrs = model_ft.AuxLogits.fc.in_features
        model_ft.AuxLogits.fc = nn.Linear(num_ftrs, num_classes)
        # Handle the primary net
        num_ftrs = model_ft.fc.in_features
        model_ft.fc = nn.Linear(num_ftrs,num_classes)
        input_size = 299else:
        print("Invalid model name, exiting...")
        exit()return model_ft, input_size

3. 设置哪些层需要训练

  • 在关于哪些层需要训练,首先导入模型的名字,把最终的输出结果 102 导入进去,然后选择是否动那些层,是否使用人家的模型参数。
model_ft, input_size = initialize_model(model_name, 102, feature_extract, use_pretrained=True)
  • 使用 GPU 进行计算。
model_ft = model_ft.to(device)
  • 将我们训练完成后的模型保存到指定路径之下。​
filename='checkpoint.pth'
  • 是否训练所有层。
params_to_update = model_ft.parameters()
print("Params to learn:")
if feature_extract:
    params_to_update = []
    for name,param in model_ft.named_parameters():
        if param.requires_grad == True:
            params_to_update.append(param)
            print("\\t",name)
else:
    for name,param in model_ft.named_parameters():
        if param.requires_grad == True:
            print("\\t",name)
#Params to learn:
#	 fc.0.weight
#	 fc.0.bias
#model_ft

4. 优化器设置

  • 进行学习率衰减。
optimizer_ft = optim.Adam(params_to_update, lr=1e-2)
scheduler = optim.lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)#学习率每7个epoch衰减成原来的1/10
#最后一层已经LogSoftmax()了,所以不能nn.CrossEntropyLoss()来计算了,nn.CrossEntropyLoss()相当于logSoftmax()和nn.NLLLoss()整合
criterion = nn.NLLLoss()

5. 训练模块

def train_model(model, dataloaders, criterion, optimizer, num_epochs=25, is_inception=False,filename=filename):
    since = time.time()
    best_acc = 0
    """
    checkpoint = torch.load(filename)
    best_acc = checkpoint['best_acc']
    model.load_state_dict(checkpoint['state_dict'])
    optimizer.load_state_dict(checkpoint['optimizer'])
    model.class_to_idx = checkpoint['mapping']
    """
    model.to(device)
​
    val_acc_history = []
    train_acc_history = []
    train_losses = []
    valid_losses = []
    LRs = [optimizer.param_groups[0]['lr']]
​
    best_model_wts = copy.deepcopy(model.state_dict())for epoch in range(num_epochs):
        print('Epoch /'.format(epoch, num_epochs - 1))
        print('-' * 10)# 训练和验证
        for phase in ['train', 'valid']:
            if phase == 'train':
                model.train()  # 训练
            else:
                model.eval()   # 验证
​
            running_loss = 0.0
            running_corrects = 0# 把数据都取个遍
            for inputs, labels in dataloaders[phase]:
                inputs = inputs.to(device)
                labels = labels.to(device)# 清零
                optimizer.zero_grad()
                # 只有训练的时候计算和更新梯度
                with torch.set_grad_enabled(phase == 'train'):
                    if is_inception and phase == 'train':
                        outputs, aux_outputs = model(inputs)
                        loss1 = criterion(outputs, labels)
                        loss2 = criterion(aux_outputs, labels)
                        loss = loss1 + 0.4*loss2
                    else:#resnet执行的是这里
                        outputs = model(inputs)
                        loss = criterion(outputs, labels)
​
                    _, preds = torch.max(outputs, 1)# 训练阶段更新权重
                    if phase == 'train':
                        loss.backward()
                        optimizer.step()# 计算损失
                running_loss += loss.item() * inputs.size(0)
                running_corrects += torch.sum(preds == labels.data)
​
            epoch_loss = running_loss / len(dataloaders[phase].dataset)
            epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset)
            
            
            time_elapsed = time.time() - since
            print('Time elapsed :.0fm :.0fs'.format(time_elapsed // 60, time_elapsed % 60))
            print(' Loss: :.4f Acc: :.4f'.format(phase, epoch_loss, epoch_acc))# 得到最好那次的模型
            if phase == 'valid' and epoch_acc > best_acc:
                best_acc = epoch_acc
                best_model_wts = copy.deepcopy(model.state_dict())
                state = 
                  'state_dict': model.state_dict(),
                  'best_acc': best_acc,
                  'optimizer' : optimizer.state_dict(),
                
                torch.save(state, filename)
            if phase == 'valid':
                val_acc_history.append(epoch_acc)
                valid_losses.append(epoch_loss)
                scheduler.step(epoch_loss)
            if phase == 'train':
                train_acc_history.append(epoch_acc)
                train_losses.append(epoch_loss)
        
        print('Optimizer learning rate : :.7f'.format(optimizer.param_groups[0]['lr']))
        LRs.append(optimizer.param_groups[0]['lr'])
        print()
​
    time_elapsed = time.time() - since
    print('Training complete in :.0fm :.0fs'.format(time_elapsed // 60, time_elapsed % 60))
    print('Best val Acc: :4f'.format(best_acc))# 训练完后用最好的一次当做模型最终的结果
    model.load_state_dict(best_model_wts)
    return model, val_acc_history, train_acc_history, valid_losses, train_losses, LRs 

model_ft, val_acc_history, train_acc_history, valid_losses, train_losses, LRs  = train_model(model_ft, dataloaders, criterion, optimizer_ft查看详情  

图像分类---利用pytorch搭建alexnet网络模型训练自己的数据集(猫狗分类)(代码片段)

1数据准备    很多例子做图像分类的时候都喜欢用手写数字作为例子来讲解图像分类,这是一个及其不负责任的教学,我个人认为做深度学习有时候是要在数据集上下功夫的,而且因为很多框架都内置了手写数字数... 查看详情

pytorch从头搭建并训练一个神经网络模型(图像分类cnn)(代码片段)

...多稍微修改下源码的接口满足自己的需求。还从来没有用PyTorch从头搭建并训练一个模型出来。正好最近在较为系统地学PyTorch,就总结一下如何从头搭建并训练一个神经网络模型。1.使用torchvision加载数据集并做预处理我们使... 查看详情

计算机视觉中图像分类任务脉络梳理

...ageNet,1.2M训练图像、50k验证图像、1k个类别。每年会举行基于ImageNet数据集的ILSVRC竞赛,这相当于计算机视觉界奥林匹克。鉴于图像分类任务上,DL已经超越人类水平,ImageNet挑战赛在2017年是最后一届。2图像分类经典结构基本架... 查看详情

pt之transformer:基于pytorch框架利用transformer算法针对imdb数据集实现情感分类的应用案例代码解析(代码片段)

PT之Transformer:基于PyTorch框架利用Transformer算法针对IMDB数据集实现情感分类的应用案例代码解析目录基于PyTorch框架利用Transformer算法针对IMDB数据集实现情感分类的应用案例思路设计(1)、数据准备(2)、数据预处理(3)、模型构建(... 查看详情

加载pytorch中的预训练模型及部分结构的导入(代码片段)

torchvision.modelmodel子包中包含了用于处理不同任务的经典模型的定义,包括:图像分类、像素级语义分割、对象检测、实例分割、人员关键点检测和视频分类。图像分类:语义分割: 对象检测、实例分割和人员关键点检测:&n... 查看详情

pytorch学习笔记第五篇——训练分类器(代码片段)

文章目录1.数据2.训练图像分类器2.1加载并标准化CIFAR102.2训练图像3.定义卷积神经网络、损失函数、优化器、训练网络和保存模型4.测试自己的模型5.在GPU上进行训练1.数据通常,当您必须处理图像,文本,音频或视频... 查看详情

pytorchcifar10图像分类efficientnetv1篇(代码片段)

PytorchCIFAR10图像分类EfficientNetv1篇文章目录PytorchCIFAR10图像分类EfficientNetv1篇4.定义网络(EfficientNet)EfficientNet介绍EfficientNet性能比较EfficientNet的baselineEfficientNet模型混合缩放方法其他版本的EfficientNet(B1-B7)判断是否使用GPUSE... 查看详情

基于resnet训练flower图像分类模型(p31-p37)(代码片段)

概述   本文属于跟着b站学习pytorch笔记系列。网上很多大佬关于renet模型图像识别的分类文章很多,但是图像部分通常就是一笔带过,给个链接。还是看了知乎的文章从头准备了数据集。一数据集准备该数据集由102类产... 查看详情

基于resnet训练flower图像分类模型(p31-p37)(代码片段)

概述   本文属于跟着b站学习pytorch笔记系列。网上很多大佬关于renet模型图像识别的分类文章很多,但是图像部分通常就是一笔带过,给个链接。还是看了知乎的文章从头准备了数据集。一数据集准备该数据集由102类产... 查看详情

pytorch学习01-训练图像分类器(代码片段)

...据测试网络总结前言  提示:本篇博客主要是记录pytorch的学习过程,当作是一个笔记来使用。  本篇内容:训练图像分类器,步骤如下:1.使用torchvision加 查看详情

图像分类convit从入门到实战——使用convit实现植物幼苗的分类(pytorch)(代码片段)

摘要来自Facebook的研究者提出了一种名为ConViT的新计算机视觉模型,它结合了两种广泛使用的AI架构——卷积神经网络(CNN)和Transformer,该模型取长补短,克服了CNN和Transformer本身的一些局限性。同时,借助这两种架... 查看详情

使用预训练的 pytorch vgg16 模型及其类进行分类

】使用预训练的pytorchvgg16模型及其类进行分类【英文标题】:Classificationwithpretrainedpytorchvgg16modelanditsclasses【发布时间】:2020-10-1010:05:21【问题描述】:我用pytorch的预训练vgg16模型写了一个图像vgg分类模型。importmatplotlib.pyplotasplti... 查看详情

基于pytorch实现简单的分类模型训练

基本功能如下:支持分布式训练;支持余弦退火学习率与warmup调整策略;支持断点续训;支持训练日志保存;支持标签平滑策略;支持层冻结;支持torchvision.models模型的训练;支持tensorboard可视化学... 查看详情

Pytorch 默认数据加载器卡在大型图像分类训练集上

】Pytorch默认数据加载器卡在大型图像分类训练集上【英文标题】:Pytorchdefaultdataloadergetsstuckforlargeimageclassificationtrainingset【发布时间】:2020-05-2703:07:15【问题描述】:我正在Pytorch中训练图像分类模型,并使用他们的defaultdataloader... 查看详情

手撕cnn经典网络之vggnet(pytorch实战篇)

...)详细介绍了VGGNet的网络结构,今天我们将使用PyTorch来复现VGGNet网络,并用VGGNet模型来解决一个经典的Kaggle图像识别比赛问题。正文开始!1.数据集制作在论文中AlexNet作者使用的是 查看详情

手撕cnn经典网络之vggnet(pytorch实战篇)

...)详细介绍了VGGNet的网络结构,今天我们将使用PyTorch来复现VGGNet网络,并用VGGNet模型来解决一个经典的Kaggle图像识别比赛问题。正文开始!1.数据集制作在论文中AlexNet作者使用的是 查看详情

keras深度学习实战——基于resnet模型实现性别分类(代码片段)

Keras深度学习实战——基于ResNet模型实现性别分类0.前言1.ResNet架构简介2.基于预训练的ResNet50模型实现性别分类2.1训练性别分类模型2.2错误分类图像示例相关链接0.前言从VGG16到VGG19,最显著的变化在于网络层数的增加,通... 查看详情