内核解读之内存管理内存管理三级架构之内存区域zone(代码片段)

奇妙之二进制 奇妙之二进制     2023-01-06     705

关键词:

文章目录

1、zone类型

NUMA结构下, 每个处理器CPU与一个本地内存直接相连, 而不同处理器之前则通过总线进行进一步的连接, 因此相对于任何一个CPU访问本地内存的速度比访问远程内存的速度要快, 而Linux为了兼容NUMA结构, 把物理内存相依照CPU的不同node分成簇, 一个CPU-node对应一个本地内存pgdata_t。

这样已经很好的表示物理内存了, 在一个理想的计算机系统中, 一个页框就是一个内存的分配单元, 可用于任何事情:存放内核数据, 用户数据和缓冲磁盘数据等等。任何种类的数据页都可以存放在任页框中, 没有任何限制。

但是Linux内核又把各个物理内存节点分成n个不同的管理区域zone, 这是为什么呢?

因为实际的计算机体系结构有硬件的诸多限制, 这限制了页框可以使用的方式。尤其是, Linux内核必须处理两种硬件约束。

ISA总线的直接内存存储DMA处理器有一个严格的限制:他们只能对RAM的前16MB进行寻址。

在具有大容量RAM的现代32位计算机中, CPU不能直接访问所有的物理地址, 因为线性地址空间太小, 内核不可能直接映射所有物理内存到线性地址空间。

对于每个node中的内存,Linux分成了若干内存管理区域,定义在mmzone.h的枚举类型zone_type中,

enum zone_type 
	/*
	 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
	 * to DMA to all of the addressable memory (ZONE_NORMAL).
	 * On architectures where this area covers the whole 32 bit address
	 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
	 * DMA addressing constraints. This distinction is important as a 32bit
	 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
	 * platforms may need both zones as they support peripherals with
	 * different DMA addressing limitations.
	 */
#ifdef CONFIG_ZONE_DMA
	ZONE_DMA,
#endif
#ifdef CONFIG_ZONE_DMA32
	ZONE_DMA32,
#endif
	/*
	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
	 * performed on pages in ZONE_NORMAL if the DMA devices support
	 * transfers to all addressable memory.
	 */
	ZONE_NORMAL,
#ifdef CONFIG_HIGHMEM
	/*
	 * A memory area that is only addressable by the kernel through
	 * mapping portions into its own address space. This is for example
	 * used by i386 to allow the kernel to address the memory beyond
	 * 900MB. The kernel will set up special mappings (page
	 * table entries on i386) for each page that the kernel needs to
	 * access.
	 */
	ZONE_HIGHMEM,
#endif
	/*
	 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
	 * movable pages with few exceptional cases described below. Main use
	 * cases for ZONE_MOVABLE are to make memory offlining/unplug more
	 * likely to succeed, and to locally limit unmovable allocations - e.g.,
	 * to increase the number of THP/huge pages. Notable special cases are:
	 *
	 * 1. Pinned pages: (long-term) pinning of movable pages might
	 *    essentially turn such pages unmovable. Therefore, we do not allow
	 *    pinning long-term pages in ZONE_MOVABLE. When pages are pinned and
	 *    faulted, they come from the right zone right away. However, it is
	 *    still possible that address space already has pages in
	 *    ZONE_MOVABLE at the time when pages are pinned (i.e. user has
	 *    touches that memory before pinning). In such case we migrate them
	 *    to a different zone. When migration fails - pinning fails.
	 * 2. memblock allocations: kernelcore/movablecore setups might create
	 *    situations where ZONE_MOVABLE contains unmovable allocations
	 *    after boot. Memory offlining and allocations fail early.
	 * 3. Memory holes: kernelcore/movablecore setups might create very rare
	 *    situations where ZONE_MOVABLE contains memory holes after boot,
	 *    for example, if we have sections that are only partially
	 *    populated. Memory offlining and allocations fail early.
	 * 4. PG_hwpoison pages: while poisoned pages can be skipped during
	 *    memory offlining, such pages cannot be allocated.
	 * 5. Unmovable PG_offline pages: in paravirtualized environments,
	 *    hotplugged memory blocks might only partially be managed by the
	 *    buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
	 *    parts not manged by the buddy are unmovable PG_offline pages. In
	 *    some cases (virtio-mem), such pages can be skipped during
	 *    memory offlining, however, cannot be moved/allocated. These
	 *    techniques might use alloc_contig_range() to hide previously
	 *    exposed pages from the buddy again (e.g., to implement some sort
	 *    of memory unplug in virtio-mem).
	 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create
	 *    situations where ZERO_PAGE(0) which is allocated differently
	 *    on different platforms may end up in a movable zone. ZERO_PAGE(0)
	 *    cannot be migrated.
	 * 7. Memory-hotplug: when using memmap_on_memory and onlining the
	 *    memory to the MOVABLE zone, the vmemmap pages are also placed in
	 *    such zone. Such pages cannot be really moved around as they are
	 *    self-stored in the range, but they are treated as movable when
	 *    the range they describe is about to be offlined.
	 *
	 * In general, no unmovable allocations that degrade memory offlining
	 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
	 * have to expect that migrating pages in ZONE_MOVABLE can fail (even
	 * if has_unmovable_pages() states that there are no unmovable pages,
	 * there can be false negatives).
	 */
	ZONE_MOVABLE,
#ifdef CONFIG_ZONE_DEVICE
	ZONE_DEVICE,
#endif
	__MAX_NR_ZONES

;

可以看到上面有些区的定义是这样的:

#ifdef CONFIG_HIGHMEM
   /*
    * A memory area that is only addressable by the kernel through
    * mapping portions into its own address space. This is for example
    * used by i386 to allow the kernel to address the memory beyond
    * 900MB. The kernel will set up special mappings (page
    * table entries on i386) for each page that the kernel needs to
    * access.
    */
   ZONE_HIGHMEM,
#endif

这表明这些区是可以配置的,并不一定会存在。如在64位系统中, 并不需要高端内存, 因为64位linux支持的最大物理内存为64TB, 对于虚拟地址空间的划分,将0x0000,0000,0000,0000 – 0x0000,7fff,ffff,f000这128T地址用于用户空间;而0xffff,8000,0000,0000以上的128T为系统空间地址, 这远大于当前我们系统中的内存空间, 因此所有的物理地址都可以直接映射到虚拟地址, 不需要高端内存的特殊映射。

管理区的类型用zone_type表示, 有如下几种:

管理内存域描述
ZONE_DMA需要单独管理DMA的物理页面的原因:
1、DMA使用物理地址访问内存,不经过MMU
2、需要连续的缓冲区
为了能够提供物理上连续的缓冲区,必须从物理地址空间专门划分一段区域用于DMA。
ZONE_DMA32不解释
ZONE_NORMA表示内核能够直接线性映射的普通内存区域。比如内核程序中代码段、全局变量以及kmalloc获取的堆内存等。从此处获取内存一般是连续的,但是不能太大。
ZONE_HIGHMEM标记了超出内核虚拟地址空间的物理内存段, 因此这段地址不能被内核直接映射,它的存在是为了解决前面提及的内存映射不够的问题。这个区域比较复杂可细分为三部分。但64位的cpu不存在虚拟地址不够用的问题,所以不存在高端内存区,arm32也即将消亡,所以我们不会再讨论高端内存区。
ZONE_MOVABLE内核定义了一个伪内存域ZONE_MOVABLE, 在防止物理内存碎片的机制memory migration中需要使用该内存域,供防止物理内存碎片的极致使用。
ZONE_DEVICE为支持热插拔设备而分配的Non Volatile Memory非易失性内存

2、zone结构体

一个管理区域用结构体struct zone来描述,struct zone在linux/mmzone.h中定义。

struct zone 
	/* Read-mostly fields */

	/* zone watermarks, access with *_wmark_pages(zone) macros */
	unsigned long _watermark[NR_WMARK];
      
	unsigned long watermark_boost;

	unsigned long nr_reserved_highatomic;

	/*
	 * We don't know if the memory that we're going to allocate will be
	 * freeable or/and it will be released eventually, so to avoid totally
	 * wasting several GB of ram we must reserve some of the lower zone
	 * memory (otherwise we risk to run OOM on the lower zones despite
	 * there being tons of freeable ram on the higher zones).  This array is
	 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
	 * changes.
	 */
	long lowmem_reserve[MAX_NR_ZONES];
	/*zone 中预留的内存, 为了防止一些代码必须运行在低地址区域,所以事先保留一些低地址区域的内存。*/

#ifdef CONFIG_NUMA
	int node; /*NUMA体系下需要知道该zone属于哪个结点,因为有多个节点*/
#endif
	struct pglist_data	*zone_pgdat;   /* 这个zone所属内存节点 */
	struct per_cpu_pages	__percpu *per_cpu_pageset; 
	struct per_cpu_zonestat	__percpu *per_cpu_zonestats;
	/*
	 * the high and batch values are copied to individual pagesets for
	 * faster access
	 */
	int pageset_high;
	int pageset_batch;

#ifndef CONFIG_SPARSEMEM
	/*
	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
	 * In SPARSEMEM, this map is stored in struct mem_section
	 */
	unsigned long		*pageblock_flags;
#endif /* CONFIG_SPARSEMEM */

	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
	unsigned long		zone_start_pfn; /*区域的起始帧号*/

	/*
	 * spanned_pages is the total pages spanned by the zone, including
	 * holes, which is calculated as:
	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
	 *
	 * present_pages is physical pages existing within the zone, which
	 * is calculated as:
	 *	present_pages = spanned_pages - absent_pages(pages in holes);
	 *
	 * present_early_pages is present pages existing within the zone
	 * located on memory available since early boot, excluding hotplugged
	 * memory.
	 *
	 * managed_pages is present pages managed by the buddy system, which
	 * is calculated as (reserved_pages includes pages allocated by the
	 * bootmem allocator):
	 *	managed_pages = present_pages - reserved_pages;
	 *
	 * cma pages is present pages that are assigned for CMA use
	 * (MIGRATE_CMA).
	 *
	 * So present_pages may be used by memory hotplug or memory power
	 * management logic to figure out unmanaged pages by checking
	 * (present_pages - managed_pages). And managed_pages should be used
	 * by page allocator and vm scanner to calculate all kinds of watermarks
	 * and thresholds.
	 *
	 * Locking rules:
	 *
	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
	 * It is a seqlock because it has to be read outside of zone->lock,
	 * and it is done in the main allocator path.  But, it is written
	 * quite infrequently.
	 *
	 * The span_seq lock is declared along with zone->lock because it is
	 * frequently read in proximity to zone->lock.  It's good to
	 * give them a chance of being in the same cacheline.
	 *
	 * Write access to present_pages at runtime should be protected by
	 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of
	 * present_pages should use get_online_mems() to get a stable value.
	 */
	atomic_long_t		managed_pages; /*present_pages中被buddy system管理的业数*/
	unsigned long		spanned_pages;   /*  总页数,包含空洞  */
	unsigned long		present_pages;   /*  可用页数,不包含空洞  */
#if defined(CONFIG_MEMORY_HOTPLUG)
	unsigned long		present_early_pages;
#endif
#ifdef CONFIG_CMA
	unsigned long		cma_pages;
#endif

	const char		*name;

#ifdef CONFIG_MEMORY_ISOLATION
	/*
	 * Number of isolated pageblock. It is used to solve incorrect
	 * freepage counting problem due to racy retrieving migratetype
	 * of pageblock. Protected by zone->lock.
	 */
	unsigned long		nr_isolate_pageblock;
#endif

#ifdef CONFIG_MEMORY_HOTPLUG
	/* see spanned/present_pages for more description */
	seqlock_t		span_seqlock;
#endif

	int initialized;

	/* Write-intensive fields used from the page allocator */
	CACHELINE_PADDING(_pad1_);

	/* free areas of different sizes */
	struct free_area	free_area[MAX_ORDER]; /* 伙伴系统:zone区域的内存被分成11种2的n次方大小的内存块,相同大小的内存块通过链表组织起来 */

	/* zone flags, see below */
	unsigned long		flags;
/*
enum zone_flags 
	ZONE_BOOSTED_WATERMARK,		/* zone recently boosted watermarks.
					 * Cleared when kswapd is woken.
					 */
	ZONE_RECLAIM_ACTIVE,		/* kswapd may be scanning the zone. */
;
*/
    
	/* Primarily protects free_area */
	spinlock_t		lock;

	/* Write-intensive fields used by compaction and vmstats. */
	CACHELINE_PADDING(_pad2_);

	/*
	 * When free pages are below this point, additional steps are taken
	 * when reading the number of free pages to avoid per-cpu counter
	 * drift allowing watermarks to be breached
	 */
	unsigned long percpu_drift_mark;

#if defined CONFIG_COMPACTION || defined CONFIG_CMA
	/* pfn where compaction free scanner should start */
	unsigned long		compact_cached_free_pfn;
	/* pfn where compaction migration scanner should start */
	unsigned long		compact_cached_migrate_pfn[ASYNC_AND_SYNC];
	unsigned long		compact_init_migrate_pfn;
	unsigned long		compact_init_free_pfn;
#endif

#ifdef CONFIG_COMPACTION
	/*
	 * On compaction failure, 1<<compact_defer_shift compactions
	 * are skipped before trying again. The number attempted since
	 * last failure is tracked with compact_considered.
	 * compact_order_failed is the minimum compaction failed order.
	 */
	unsigned int		compact_considered;
	unsigned int		compact_defer_shift;
	int			compact_order_failed;
#endif

#if defined CONFIG_COMPACTION || defined CONFIG_CMA
	/* Set to true when the PG_migrate_skip bits should be cleared */
	bool			compact_blockskip_flush;
#endif

	bool			contiguous;

	CACHELINE_PADDING(_pad3_);
	/* Zone statistics */ /* zone统计信息 */
	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
	atomic_long_t		vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
 ____cacheline_internodealigned_in_smp;

每个zone在系统启动时会计算出 3 个水位值, 分别为 WMAKR_MIN, WMARK_LOW, WMARK_HIGH 水位, 这在页面分配器和 kswapd 页面回收中会用到。

enum zone_watermarks 
    WMARK_MIN,
    WMARK_LOW,
    WMARK_HIGH,
    WMARK_PROMO,
    NR_WMARK
;

当系统中可用内存很少的时候,系统进程kswapd被唤醒, 开始回收释放page, 水印这些参数(WMARK_MIN, WMARK_LOW, WMARK_HIGH)影响着这个代码的行为。

每个zone有三个水平标准:watermark[WMARK_MIN], watermark[WMARK_LOW], watermark[WMARK_HIGH],帮助确定zone中内存分配使用的压力状态:

标准描述
watermark[WMARK_MIN]当空闲页面的数量达到page_min所标定的数量的时候, 说明页面数非常紧张, 分配页面的动作和kswapd线程同步运行.WMARK_MIN所表示的page的数量值,是在内存初始化的过程中调用free_area_init_core中计算的。这个数值是根据zone中的page的数量除以一个>1的系数来确定的。通常是这样初始化的ZoneSizeInPages/12
watermark[WMARK_LOW]当空闲页面的数量达到WMARK_LOW所标定的数量的时候,说明页面刚开始紧张, 则kswapd线程将被唤醒,并开始释放回收页面
watermark[WMARK_HIGH]当空闲页面的数量达到page_high所标定的数量的时候, 说明内存页面数充足, 不需要回收, kswapd线程将重新休眠,通常这个数值是page_min的3倍

由于页框频繁的分配和释放,内核在每个zone中放置了一些事先保留的页框。这些页框只能由来自本地CPU的请求使用,存放在per_cpu_pages。

/* Fields and list protected by pagesets local_lock in page_alloc.c */
struct per_cpu_pages 
	spinlock_t lock;	/* Protects lists field */
	int count;		/* number of pages in the list */
	int high;		/* high watermark, emptying needed */
	int batch;		/* chunk size for buddy add/remove */
	short free_factor;	/* batch scaling factor during free */
#ifdef CONFIG_NUMA
	short expire;		/* When 0, remote pagesets are drained */
#endif

	/* Lists of pages, one per migrate type stored on the pcp-lists */
	struct list_head lists[NR_PCP_LISTS];
 ____cacheline_aligned_in_smp;

当per_cpu_pages里的page数超过high值时,就会归还batch个pages给zone的buddy system。如果pcp没有free page了,每次从zone中批量分配batch个pages。

关于pcp技术后面还会深入。

struct free_area free_area[MAX_ORDER];
伙伴系统:zone区域的内存被分成11种2的n次方大小的内存块,相同大小的内存块通过链表组织起来。

struct free_area 
	struct list_head	free_list[MIGRATE_TYPES];
	unsigned long		nr_free;
;

enum migratetype 
	MIGRATE_UNMOVABLE,
	MIGRATE_MOVABLE,
	MIGRATE_RECLAIMABLE,
	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
	MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
#ifdef CONFIG_CMA
	/*
	 * MIGRATE_CMA migration type is designed to mimic the way
	 * ZONE_MOVABLE works.  Only movable pages can be allocated
	 * from MIGRATE_CMA pageblocks and page allocator never
	 * implicitly change migration type of MIGRATE_CMA pageblock.
	 *
	 * The way to use it is to change migratetype of a range of
	 * pageblocks to MIGRATE_CMA which can be done by
	 * __free_pageblock_cma() function.
	 */
	MIGRATE_CMA,
#endif
#ifdef CONFIG_MEMORY_ISOLATION
	MIGRATE_ISOLATE,	/* can't allocate from here */
#endif
	MIGRATE_TYPES
;

这张图画的非常棒,展示了内存各级的关系:

3、zone的初始化流程

--->setup_arch
  --->bootmem_init
      ---->sparse_init
      ---->zone_sizes_init
         --->free_area_init
            ---->free_area_init_node
void __init bootmem_init(void)

	unsigned long min, max;

	min = PFN_UP(memblock_start_of_DRAM());
	max = PFN_DOWN(memblock_end_of_DRAM());

	early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT);

	max_pfn = max_low_pfn = max;
	min_low_pfn = min;
...

bootmem_init从memblock管理的物理内存计算出物理内存的最大和最小PFN,用于初始化zone。

free_area_init初始化了所有node结点结构体pg_data_t和每个node的zone。关于node结点的初始化可以参看前面的文章,简而言之就是从设备树解析出有多少个node结点,以及每个node结点的内存区间。

然后对每个node调用free_area_init_node:

static void __init free_area_init_node(int nid)

	pg_data_t *pgdat = NODE_DATA(nid);
	unsigned long start_pfn = 0;
	unsigned long end_pfn = 0;

	/* pg_data_t should be reset to zero when it's allocated */
	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);

	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);

	pgdat->node_id = nid;
	pgdat->node_start_pfn = start_pfn;
	pgdat->per_cpu_nodestats = NULL;

	if (start_pfn != end_pfn) 
		pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\\n", nid,
			(u64)start_pfn << PAGE_SHIFT,
			end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
	 else 
		pr_info("Initmem setup node %d as memoryless\\n", nid);
	

	calculate_node_totalpages(pgdat, start_pfn, end_pfn);

	alloc_node_mem_map(pgdat);
	pgdat_set_deferred_range(pgdat);

	free_area_init_core(pgdat);

初始化了pg_data_t的部分成员,主要计算每个结点的内存页数(每个结点的内存区间存放在memblock里,根据memblock来初始化每个结点的内存区间)、空洞内存页数,每个zone的起始pfn、可用页数(除去一部分用来存放mem_map)、平铺页数(包含空洞)、存在页数(原始物理内存页数)、free_area链表数组等。

如果是平坦内存模型,alloc_node_mem_map函数用于给pg_data_t的node_mem_map分配空间;

如果不是,alloc_node_mem_map是个空函数,因为稀疏内存模型不用pg_data_t里的node_mem_map存放物理page。

这张图画的非常棒,展示了内存各级的关系:

下一节将介绍page结构体。

内核解读之内存管理内存管理三级架构之内存结点node(代码片段)

文章目录0、概述1、内存节点node0、概述结合NUMA的架构,Linux抽象出了三级内存管理架构:内存节点node、内存区域zone和物理页框page。在NUMA模型中,每个CPU都有自己的本地内存节点(memorynode),而且还可以... 查看详情

内核解读之内存管理内存管理三级架构之内存结点node(代码片段)

文章目录0、概述1、内存节点node2、NUMA的初始化0、概述结合NUMA的架构,Linux抽象出了三级内存管理架构:内存节点node、内存区域zone和物理页框page。在NUMA模型中,每个CPU都有自己的本地内存节点(memorynode)&#x... 查看详情

内核解读之内存管理内存管理三级架构之page(代码片段)

...级架构,node->zone->page。本节就来介绍page。页是内核管理内存的基本单位,体系结构不同,支持的页大小也不尽相同,还有些体系结构甚至支持几种不同的页大小。大多数32位体系结构支持4KB的页,而64位... 查看详情

内核解读之内存管理内存管理三级架构之page(代码片段)

...级架构,node->zone->page。本节就来介绍page。页是内核管理内存的基本单位,体系结构不同,支持的页大小也不尽相同,还有些体系结构甚至支持几种不同的页大小。大多数32位体系结构支持4KB的页,而64位... 查看详情

内核解读之内存管理内存管理三级架构之内存区域zone(代码片段)

...,一个页框就是一个内存的分配单元,可用于任何事情:存放内核数据,用户数据和缓冲磁盘数据等等。任何种类的数据页都可以存放在任页框中,没有任何限制。但是Linux内核又把各个物理内存节点分成n个不同的管理区域zone,这是为... 查看详情

内核解读之内存管理内存管理三级架构之page(代码片段)

...级架构,node->zone->page。本节就来介绍page。页是内核管理内存的基本单位,体系结构不同,支持的页大小也不尽相同,还有些体系结构甚至支持几种不同的页大小。大多数32位体系结构支持4KB的页,而64位... 查看详情

内核解读之内存管理cpu体系架构uma和numa

文章目录1.SMP(UMA)体系架构2.NUMA体系架构3.NUMA结构基本概念内存和cpu有着密不可分的联系,学习内存管理,先了解下cpu的架构。1.SMP(UMA)体系架构CPU计算平台体系架构分为SMP体系架构和NUMA体系架构等... 查看详情

内核解读之内存管理cpu体系架构uma和numa

文章目录1.SMP(UMA)体系架构2.NUMA体系架构3.NUMA结构基本概念内存和cpu有着密不可分的联系,学习内存管理,先了解下cpu的架构。1.SMP(UMA)体系架构CPU计算平台体系架构分为SMP体系架构和NUMA体系架构等... 查看详情

内核解读之内存管理内存模型(代码片段)

文章目录1、基本术语2、FLATMEM(平坦内存模型)3、SPARSEMEM稀疏内存模型1、基本术语在介绍内存模型之前需要了解一些基本的知识。1、什么是pageframe?在linux操作系统中,物理内存被分成一页页的pageframe来管理ÿ... 查看详情

内核解读之内存管理内存模型(代码片段)

文章目录基本的术语CONFIG_FLATMEM(平坦内存模型)稀疏的内存模型基本的术语在介绍内存模型之前需要了解一些基本的知识。1、什么是pageframe?在linux操作系统中,物理内存被分成一页页的pageframe来管理,具体... 查看详情

内核解读之内存管理开篇介绍

...目录1、开篇介绍2、基本概念1、开篇介绍内存管理是linux内核比较重要的一个模块,其实也是任何操作系统里的一个核心专题。在实际的开发工作中,经常会遇到和内存牵扯的问题,比如内存泄露啊,内存越界等。如果你的技术... 查看详情

内核解读之内存管理开篇介绍

...目录1、开篇介绍2、基本概念1、开篇介绍内存管理是linux内核比较重要的一个模块,其实也是任何操作系统里的一个核心专题。在实际的开发工作中,经常会遇到和内存牵扯的问题,比如内存泄露啊,内存越界等。如果你的技术... 查看详情

内核解读之内存管理页分配器伙伴系统介绍(代码片段)

文章目录1分配器的需求2伙伴系统的内存组织2.1zonelist列表结构2.2zone的空闲内存结构2.3内存迁移类型2.4pcp页框1分配器的需求伙伴系统是linux的页框分配器,负责系统物理内存的分配工作。由于几乎所有模... 查看详情

内核解读之内存管理页分配器伙伴系统介绍(代码片段)

文章目录1分配器的需求2伙伴系统的内存组织2.1zonelist列表结构2.2zone的空闲内存结构2.3内存迁移类型2.4pcp页框1分配器的需求伙伴系统是linux的页框分配器,负责系统物理内存的分配工作。由于几乎所有模... 查看详情

内核源码解读之内存管理(10)percpu_page_set分析(代码片段)

...争激烈程度也会越来越大。为了改善这个问题,linux内核中引入了per_cpu_page 查看详情

内核解读之内存管理(12)进程虚拟内存管理vm_area_struct与反向映射(代码片段)

...,也就是说用户进程享有前3GB线性地址空间,而内核独享最后1GB线性地址空间。由于虚拟内存的引入,每个进程都可拥有3GB的虚拟内存,并且用户进程之间的地址空间是互不可见、互不影响的,也就是说即使... 查看详情

内核解读之内存管理(12)进程虚拟内存管理vm_area_struct与反向映射(代码片段)

...,也就是说用户进程享有前3GB线性地址空间,而内核独享最后1GB线性地址空间。由于虚拟内存的引入,每个进程都可拥有3GB的虚拟内存,并且用户进程之间的地址空间是互不可见、互不影响的,也就是说即使... 查看详情

内核解读之内存管理(12)进程虚拟内存管理vm_area_struct与反向映射(代码片段)

...,也就是说用户进程享有前3GB线性地址空间,而内核独享最后1GB线性地址空间。由于虚拟内存的引入,每个进程都可拥有3GB的虚拟内存,并且用户进程之间的地址空间是互不可见、互不影响的,也就是说即使... 查看详情