pytorch学习笔记:模型定义修改保存(代码片段)

GoAI GoAI     2022-12-02     363

关键词:

往期学习资料推荐:

1.Pytorch实战笔记_GoAI的博客-CSDN博客

2.Pytorch入门教程_GoAI的博客-CSDN博客

本系列目录:

PyTorch学习笔记(一):PyTorch环境安装

PyTorch学习笔记(二):简介与基础知识

PyTorch学习笔记(三):PyTorch主要组成模块

PyTorch学习笔记(四):PyTorch基础实战

PyTorch学习笔记(五):模型定义、修改、保存

后续继续更新!!!!

 一、PyTorch模型定义的方式

  • Module 类是 torch.nn 模块里提供的一个模型构造类 (nn.Module),是所有神经⽹网络模块的基类,我们可以继承它来定义我们想要的模型;
  • PyTorch模型定义应包括两个主要部分:各个部分的初始化(_init_);数据流向定义(forward)

基于nn.Module,可以通过Sequential,ModuleList和ModuleDict三种方式定义PyTorch模型。

1.Sequential

对应模块为nn.Sequential()。

当模型的前向计算为简单串联各个层的计算时, Sequential 类可以通过更加简单的方式定义模型。它可以接收一个子模块的有序字典(OrderedDict) 或者一系列子模块作为参数来逐一添加 Module 的实例,⽽模型的前向计算就是将这些实例按添加的顺序逐⼀计算。我们结合Sequential和定义方式加以理解:

class MySequential(nn.Module):
    from collections import OrderedDict
    def __init__(self, *args):
        super(MySequential, self).__init__()
        if len(args) == 1 and isinstance(args[0], OrderedDict): # 如果传入的是一个OrderedDict
            for key, module in args[0].items():
                self.add_module(key, module)  # add_module方法会将module添加进self._modules(一个OrderedDict)
        else:  # 传入的是一些Module
            for idx, module in enumerate(args):
                self.add_module(str(idx), module)
    def forward(self, input):
        # self._modules返回一个 OrderedDict,保证会按照成员添加时的顺序遍历成
        for module in self._modules.values():
            input = module(input)
        return input

下面来看下如何使用Sequential来定义模型。只需要将模型的层按序排列起来即可,根据层名的不同,排列的时候有两种方式:

  • 直接排列

import torch.nn as nn
net = nn.Sequential(
        nn.Linear(784, 256),
        nn.ReLU(),
        nn.Linear(256, 10), 
        )
print(net)
Sequential(
  (0): Linear(in_features=784, out_features=256, bias=True)
  (1): ReLU()
  (2): Linear(in_features=256, out_features=10, bias=True)
)
  • OrderedDict:

import collections
import torch.nn as nn
net2 = nn.Sequential(collections.OrderedDict([
          ('fc1', nn.Linear(784, 256)),
          ('relu1', nn.ReLU()),
          ('fc2', nn.Linear(256, 10))
          ]))
print(net2)
Sequential(
  (fc1): Linear(in_features=784, out_features=256, bias=True)
  (relu1): ReLU()
  (fc2): Linear(in_features=256, out_features=10, bias=True)
)

可以看到,使用Sequential定义模型的好处在于简单、易读,同时使用Sequential定义的模型不需要再写forward,因为顺序已经定义好了。但使用Sequential也会使得模型定义丧失灵活性,比如需要在模型中间加入一个外部输入时就不适合用Sequential的方式实现。使用时需根据实际需求加以选择。

2.ModuleList

对应模块为nn.ModuleList()。

ModuleList 接收一个子模块(或层,需属于nn.Module类)的列表作为输入,然后也可以类似List那样进行append和extend操作。同时,子模块或层的权重也会自动添加到网络中来。

net = nn.ModuleList([nn.Linear(784, 256), nn.ReLU()])
net.append(nn.Linear(256, 10)) # # 类似List的append操作
print(net[-1])  # 类似List的索引访问
print(net)
Linear(in_features=256, out_features=10, bias=True)
ModuleList(
  (0): Linear(in_features=784, out_features=256, bias=True)
  (1): ReLU()
  (2): Linear(in_features=256, out_features=10, bias=True)
)

要特别注意的是,nn.ModuleList 并没有定义一个网络,它只是将不同的模块储存在一起。ModuleList中元素的先后顺序并不代表其在网络中的真实位置顺序,需要经过forward函数指定各个层的先后顺序后才算完成了模型的定义。具体实现时用for循环即可完成:

class model(nn.Module):
  def __init__(self, ...):
    self.modulelist = ...
    ...
    
  def forward(self, x):
    for layer in self.modulelist:
      x = layer(x)
    return x

3.ModuleDict

对应模块为nn.ModuleDict()。

ModuleDict和ModuleList的作用类似,只是ModuleDict能够更方便地为神经网络的层添加名称。

net = nn.ModuleDict(
    'linear': nn.Linear(784, 256),
    'act': nn.ReLU(),
)
net['output'] = nn.Linear(256, 10) # 添加
print(net['linear']) # 访问
print(net.output)
print(net)
Linear(in_features=784, out_features=256, bias=True)
Linear(in_features=256, out_features=10, bias=True)
ModuleDict(
  (act): ReLU()
  (linear): Linear(in_features=784, out_features=256, bias=True)
  (output): Linear(in_features=256, out_features=10, bias=True)
)

三种方法的比较总结

  • Sequential适用于快速验证结果,不需要同时写__init__和forward;
  • ModuleList和ModuleDict在某个完全相同的层需要重复出现多次时,非常方便实现,可以”一行顶多行“;
  • 当我们需要之前层的信息的时候,比如 ResNets 中的残差计算,当前层的结果需要和之前层中的结果进行融合,一般使用 ModuleList/ModuleDict 比较方便。

二、利用模型块快速搭建复杂网络

模型搭建基本方法:

  1. 模型块分析
  2. 模型块实现
  3. 利用模型块组装模型

以U-Net模型为例,该模型为分割模型,通过残差连接结构解决了模型学习中的退化问题,使得神经网络的深度能够不断扩展。

模型块分析

  1. 每个子块内部的两次卷积DoubleConv
  2. 左侧模型块之间的下采样连接Down,通过Max pooling来实现
  3. 右侧模型块之间的上采样连接Up
  4. 输出层的处理OutConv
  5. 模型块之间的横向连接,输入和U-Net底部的连接等计算,这些单独的操作可以通过forward函数来实现

模型块实现

以U-net为例:

# 两次卷积 conv 3x3, ReLU
class DoubleConv(nn.Module):
    """(convolution => [BN] => ReLU) * 2"""

    def __init__(self, in_channels, out_channels, mid_channels=None):
        super().__init__()
        if not mid_channels:
            mid_channels = out_channels
        self.double_conv = nn.Sequential(
            nn.Conv2d(in_channels, mid_channels, kernel_size=3, padding=1, bias=False),
            nn.BatchNorm2d(mid_channels),
            nn.ReLU(inplace=True),
            nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1, bias=False),
            nn.BatchNorm2d(out_channels),
            nn.ReLU(inplace=True)
        )

    def forward(self, x):
        return self.double_conv(x)

 

# 下采样 max pool 2x2
class Down(nn.Module):
    """Downscaling with maxpool then double conv"""

    def __init__(self, in_channels, out_channels):
        super().__init__()
        self.maxpool_conv = nn.Sequential(
            nn.MaxPool2d(2),
            DoubleConv(in_channels, out_channels)
        )

    def forward(self, x):
        return self.maxpool_conv(x)
# 上采样 up-conv 2x2
class Up(nn.Module):
    """Upscaling then double conv"""

    def __init__(self, in_channels, out_channels, bilinear=True):
        super().__init__()

        # if bilinear, use the normal convolutions to reduce the number of channels
        if bilinear:
            self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
            self.conv = DoubleConv(in_channels, out_channels, in_channels // 2)
        else:
            self.up = nn.ConvTranspose2d(in_channels, in_channels // 2, kernel_size=2, stride=2)
            self.conv = DoubleConv(in_channels, out_channels)

    def forward(self, x1, x2):
        x1 = self.up(x1)
        # input is CHW
        diffY = x2.size()[2] - x1.size()[2]
        diffX = x2.size()[3] - x1.size()[3]

        x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2,
                        diffY // 2, diffY - diffY // 2])
        x = torch.cat([x2, x1], dim=1)

# 输出 conv 1x1
class OutConv(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(OutConv, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)

    def forward(self, x):
        return self.conv(x)

利用模型块组装U-net模型

class UNet(nn.Module):
    def __init__(self, n_channels, n_classes, bilinear=True):
        super(UNet, self).__init__()
        self.n_channels = n_channels
        self.n_classes = n_classes
        self.bilinear = bilinear
        
        self.inc = DoubleConv(n_channels, 64)
        self.down1 = Down(64, 128)
        self.down2 = Down(128, 256)
        self.down3 = Down(256, 512)
        factor = 2 if bilinear else 1
        self.down4 = Down(512, 1024 // factor)
        self.up1 = Up(1024, 512 // factor, bilinear)
        self.up2 = Up(512, 256 // factor, bilinear)
        self.up3 = Up(256, 128 // factor, bilinear)
        self.up4 = Up(128, 64, bilinear)
        self.outc = OutConv(64, n_classes)
    
    def forward(self, x):
        x1 = self.inc(x)
        x2 = self.down1(x1)
        x3 = self.down2(x2)
        x4 = self.down3(x3)
        x5 = self.down4(x4)
        x = self.up1(x5, x4)
        x = self.up2(x, x3)
        x = self.up3(x, x2)
        x = self.up4(x, x1)
        logits = self.outc(x)
        return logits

三、PyTorch修改模型

1.模型层

以pytorch中torchvision库预定义好的模型ResNet50为例,模型参数如下:

import torchvision.models as models
net = models.resnet50()
print(net)
ResNet(
  (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
  (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (relu): ReLU(inplace=True)
  (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
  (layer1): Sequential(
    (0): Bottleneck(
      (conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (downsample): Sequential(
        (0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
..............
  (avgpool): AdaptiveAvgPool2d(output_size=(1, 1))
  (fc): Linear(in_features=2048, out_features=1000, bias=True)
)

为了适配ImageNet预训练的权重,因此最后全连接层(fc)的输出节点数是1000。假设我们要用这个resnet模型去做一个10分类的问题,就应该修改模型的fc层,将其输出节点数替换为10。另外,我们觉得一层全连接层可能太少了,想再加一层。

可以做如下修改:

from collections import OrderedDict
classifier = nn.Sequential(OrderedDict([('fc1', nn.Linear(2048, 128)),
                          ('relu1', nn.ReLU()), 
                          ('dropout1',nn.Dropout(0.5)),
                          ('fc2', nn.Linear(128, 10)),
                          ('output', nn.Softmax(dim=1))
                          ]))
    
net.fc = classifier

这里的操作相当于将模型(net)最后名称为“fc”的层替换成了名称为“classifier”的结构,该结构是我们自己定义的。这里使用了Sequential+OrderedDict的模型定义方式,现在的模型就可以去做10分类任务了。

2.添加外部输入

有时候在模型训练中,除了已有模型的输入之外,还需要输入额外的信息。比如在CNN网络中,我们除了输入图像,还需要同时输入图像对应的其他信息,这时候就需要在已有的CNN网络中添加额外的输入变量。基本思路是:将原模型添加输入位置前的部分作为一个整体,同时在forward中定义好原模型不变的部分、添加的输入和后续层之间的连接关系,从而完成模型的修改。

我们以torchvision的resnet50模型为基础,任务还是10分类任务。不同点在于,我们希望利用已有的模型结构,在倒数第二层增加一个额外的输入变量add_variable来辅助预测。具体实现如下:

class Model(nn.Module):
    def __init__(self, net):
        super(Model, self).__init__()
        self.net = net
        self.relu = nn.ReLU()
        self.dropout = nn.Dropout(0.5)
        self.fc_add = nn.Linear(1001, 10, bias=True)
        self.output = nn.Softmax(dim=1)
        
    def forward(self, x, add_variable):
        x = self.net(x)
        x = torch.cat((self.dropout(self.relu(x)), add_variable.unsqueeze(1)),1)
        x = self.fc_add(x)
        x = self.output(x)
        return x

这里的实现要点是通过torch.cat实现了tensor的拼接。torchvision中的resnet50输出是一个1000维的tensor,我们通过修改forward函数(配套定义一些层),先将2048维的tensor通过激活函数层和dropout层,再和外部输入变量"add_variable"拼接,最后通过全连接层映射到指定的输出维度10。

另外这里对外部输入变量"add_variable"进行unsqueeze操作是为了和net输出的tensor保持维度一致,常用于add_variable是单一数值 (scalar) 的情况,此时add_variable的维度是 (batch_size, ),需要在第二维补充维数1,从而可以和tensor进行torch.cat操作。对于unsqueeze操作可以复习下2.1节的内容和配套代码 :)

之后对我们修改好的模型结构进行实例化,就可以使用了:

import torchvision.models as models
net = models.resnet50()
model = Model(net).cuda()

另外别忘了,训练中在输入数据的时候要给两个inputs:

outputs = model(inputs, add_var)

3.添加额外输出

有时候在模型训练中,除了模型最后的输出外,我们需要输出模型某一中间层的结果,以施加额外的监督,获得更好的中间层结果。基本的思路是修改模型定义中forward函数的return变量。

我们依然以resnet50做10分类任务为例,在已经定义好的模型结构上,同时输出1000维的倒数第二层和10维的最后一层结果。具体实现如下:

class Model(nn.Module):
    def __init__(self, net):
        super(Model, self).__init__()
        self.net = net
        self.relu = nn.ReLU()
        self.dropout = nn.Dropout(0.5)
        self.fc1 = nn.Linear(1000, 10, bias=True)
        self.output = nn.Softmax(dim=1)
        
    def forward(self, x, add_variable):
        x1000 = self.net(x)
        x10 = self.dropout(self.relu(x1000))
        x10 = self.fc1(x10)
        x10 = self.output(x10)
        return x10, x1000

之后对我们修改好的模型结构进行实例化,就可以使用了:

import torchvision.models as models
net = models.resnet50()
model = Model(net).cuda()
#另外别忘了,训练中在输入数据后会有两个outputs:

out10, out1000 = model(inputs, add_var)

四、PyTorch模型保存与读取

1.模型存储格式

PyTorch存储模型主要采用pkl,pt,pth三种格式。就使用层面来说没有区别,这里不做具体的讨论。本节最后的参考内容中列出了查阅到的一些资料,感兴趣的读者可以进一步研究,欢迎留言讨论。

3.模型存储内容

一个PyTorch模型主要包含两个部分:模型结构和权重。其中模型是继承nn.Module的类,权重的数据结构是一个字典(key是层名,value是权重向量)。存储也由此分为两种形式:存储整个模型(包括结构和权重),和只存储模型权重。

from torchvision import models
model = models.resnet152(pretrained=True)

# 保存整个模型
torch.save(model, save_dir)
# 保存模型权重
torch.save(model.state_dict, save_dir)

对于PyTorch而言,pt, pth和pkl三种数据格式均支持模型权重和整个模型存储,使用上没有差别。

保存+读取整个模型

torch.save(model, save_dir)
loaded_model = torch.load(save_dir)
loaded_model.cuda()

保存+读取模型权重

torch.save(model.state_dict(), save_dir)
loaded_dict = torch.load(save_dir)
loaded_model = models.resnet152()   #注意这里需要对模型结构有定义
loaded_model.state_dict = loaded_dict
loaded_model.cuda()

pytorch学习笔记5.torchvision库(代码片段)

PyTorch学习笔记5.torchvision加载数据集一、简介二、安装三、torchvision的主要功能示例1.加载model(1)加载几个预训练模型(2)只加载模型,不加载预训练参数(4)加载部分预训练模型(5)调整模型(6)加载非预训练模型的方法3.1.6.1保存和... 查看详情

pytorch学习笔记5.torchvision库(代码片段)

PyTorch学习笔记5.torchvision加载数据集一、简介二、安装三、torchvision的主要功能示例1.加载model(1)加载几个预训练模型(2)只加载模型,不加载预训练参数(4)加载部分预训练模型(5)调整模型(6)加载非预训练模型的方法3.1.6.1保存和... 查看详情

pytorch学习笔记2.运行官网训练推理的入门示例(代码片段)

PyTorch学习笔记2.运行官网训练、推理的入门示例一、加载数据二、创建模型torch.nn.Sequential介绍:torch.nn.Linear3.torch.nn.ReLU三、调整模型参数四、保存模型五、加载模型一、加载数据首先引用必要的库:importtorchfromtorchimportnn... 查看详情

pytorch学习笔记第五篇——训练分类器(代码片段)

文章目录1.数据2.训练图像分类器2.1加载并标准化CIFAR102.2训练图像3.定义卷积神经网络、损失函数、优化器、训练网络和保存模型4.测试自己的模型5.在GPU上进行训练1.数据通常,当您必须处理图像,文本,音频或视频... 查看详情

pytorch模型训练实用教程学习笔记:二模型的构建(代码片段)

前言最近在重温Pytorch基础,然而Pytorch官方文档的各种API是根据字母排列的,并不适合学习阅读。于是在gayhub上找到了这样一份教程《Pytorch模型训练实用教程》,写得不错,特此根据它来再学习一下Pytorch。仓库地... 查看详情

pytorch学习笔记第四篇——神经网络(代码片段)

上一章已经了解了自动梯度Autograd,pytorch中可以使用torch.nn构建神经网络,nn依赖于autograd来定义模型并对其进行微分。nn.Module包含层,以及返回output的方法forward(input)。文章目录1.定义网络1.1自定义网络1.2使用自定义... 查看详情

六pytorch进阶训练技巧(代码片段)

六、PyTorch进阶训练技巧文章目录六、PyTorch进阶训练技巧1.自定义损失函数1.1.函数定义1.2.类定义1.2.1.DiceLoss1.2.2.DiceBCELoss1.2.3.IoULoss1.2.4.FocalLoss2.动态调整学习率2.1.使用官方提供的scheduler2.2.自定义scheduler3.模型微调-torchvision3.1使用... 查看详情

我是土堆-pytorch教程知识点学习总结笔记(代码片段)

此文章为【我是土堆-Pytorch教程】知识点学习总结笔记(四)包括:神经网络-非线性激活、神经网络-线性层及其他层介绍、神经网络-搭建小实战和Sequential的使用、损失函数与反向传播、优化器、现有网络模型的使用... 查看详情

使用pytorch实现深度学习的主要流程(代码片段)

一、使用Pytorch实现深度学习的主要流程使用Pytorch进行深度学习的实现流程主要包含如下几个部分:1、预处理、后处理并确认网络的输入和输出2、创建Dataset3、创建DataLoader4、创建网络模型5、定义正向传播函数(forward... 查看详情

[pytorch]pytorch保存模型与加载模型(转)(代码片段)

转自:知乎目录:保存模型与加载模型冻结一部分参数,训练另一部分参数采用不同的学习率进行训练1.保存模型与加载简单的保存与加载方法:#保存整个网络torch.save(net,PATH)#保存网络中的参数,速度快,占空间少torch.save(net.state... 查看详情

pytorch学习笔记4.定义神经网络(代码片段)

PyTorch学习笔记4.定义神经网络一、torch.nn概述1.定义网络2.网络的属性3.输入tensor给网络4.反向传播5.损失函数二、torch.nn.Module类的几种实现1.通过Sequential来包装层2.使用OrderdDict有序字典包装层三、Module类的几个方法1.children()2.model.n... 查看详情

pytorch模型训练实用教程学习笔记:一数据加载和transforms方法总结(代码片段)

前言最近在重温Pytorch基础,然而Pytorch官方文档的各种API是根据字母排列的,并不适合学习阅读。于是在gayhub上找到了这样一份教程《Pytorch模型训练实用教程》,写得不错,特此根据它来再学习一下Pytorch。仓库地... 查看详情

pytorch学习笔记8.实现线性回归模型(代码片段)

PyTorch学习笔记8.实现线性回归模型一、回归的概念1.概念2.目标3.应用4.训练线性回归的步骤二、数据集1.构造数据集2.把数据集转为pytorch使用的张量三、模型1.模型定义2.损失函数3.优化器四、使用模型1.训练2.测试3.预测4.可视化五... 查看详情

我是土堆-pytorch教程知识点学习总结笔记(代码片段)

此文章为【我是土堆- Pytorch教程】知识点学习总结笔记(五)包括:完整的模型训练套路(一)、完整的模型训练套路(二)、完整的模型训练套路(三)、利用GPU训练(一)、利用GPU... 查看详情

「深度学习一遍过」必修18:基于pytorch的语义分割模型实现(代码片段)

...型基础上实现膨胀卷积 1自定义5层普通卷积 模型结构 pytorch代码 fromtor 查看详情

pytorch学习笔记7.textcnn文本分类(代码片段)

PyTorch学习笔记7.TextCNN文本分类一、模型结构二、文本分词与编码1.分词与编码器2.数据加载器二、模型定义1.卷积层2.池化层3.全连接层三、训练过程四、测试过程五、预测过程一、模型结构2014年,YoonKim针对CNN的输入层做了一... 查看详情

pytorch学习笔记7.textcnn文本分类(代码片段)

PyTorch学习笔记7.TextCNN文本分类一、模型结构二、文本分词与编码1.分词与编码器2.数据加载器二、模型定义1.卷积层2.池化层3.全连接层三、训练过程四、测试过程五、预测过程一、模型结构2014年,YoonKim针对CNN的输入层做了一... 查看详情

pytorch:实战指南(代码片段)

在做深度学习实验或项目时,为了得到最优的模型结果,中间往往需要很多次的尝试和修改。而合理的文件组织结构,以及一些小技巧可以极大地提高代码的易读易用性。根据我的个人经验,在从事大多数深度学习研究时,程序... 查看详情